首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an important chemosensing material involving hexafluoroisopropanol (HFIP) for detecting nerve agents, para‐HFIP aniline (p‐HFIPA) has been firstly synthesized through a new reaction approach and then characterized by nuclear magnetic resonance and mass spectrometry experiments. Fourier transform infrared absorption spectroscopy (FT‐IR) and FT‐Raman spectra of p‐HFIPA have been obtained in the regions of 4000–500 and 4000–200 cm−1, respectively. Detailed identifications of its fundamental vibrational bands have been given for the first time. Moreover, p‐HFIPA has been optimized and vibrational wavenumber analysis can be subsequently performed via density functional theory (DFT) approach in order to assist these identifications in the experimental FT‐IR and FT‐Raman spectra. The present experimental FT‐IR and FT‐Raman spectra of p‐HFIPA are in good agreement with theoretical FT‐IR and FT‐Raman spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The FT‐IR and FT‐Raman spectra of anilinium sulfate were recorded and analyzed. The surface‐enhanced Raman scattering (SERS) was recorded from a silver electrode. The vibrational wavenumbers of the compound have been computed using the Hartree‐Fock/6‐31G* basis and compared with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a tilted orientation. The presence of amino and sulfate group vibrations in the SERS spectrum reveal the interaction between amino and sulfate groups with the silver surface. The direction of the charge transfer contribution to SERS has been discussed from the frontier orbital theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
FT‐Raman spectra of human enamel surfaces from sound, affected (with 1 cavity) and highly affected (with at least 3 cavities) tooth samples were analyzed by principal component analysis (PCA). Major differences between the unaffected and affected tooth samples seem to arise from the structural changes along the c‐axis of hydroxyapatite, the chief crystalline component of human dental enamel. Based on Fisher index calculations, the most discriminative value was obtained for the intensity of the only Raman active ν2PO43− (E1) symmetric deformation mode at 428 cm−1. Moreover, these changes can be observed through the whole tooth enamel surface, establishing a predisposition to caries correlated to chemical and structural composition of tooth enamel. No spectral changes regarding the CO32− substitution were detected by both nondestructive FT‐Raman and FTIR (Fourier transform infrared) spectroscopy of the powdered teeth samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
FT‐IR and FT‐Raman spectra of benzoic acid (BA) and 3,5‐dichloro salicylic acid (SA) have been recorded in the regions of 4000–400 and 4000–50 cm−1 respectively. The spectra were interpreted with the aid of normal coordinate analysis following the full structure optimizations and force field calculations based on density functional theory (DFT) using standard B3LYP6‐31G** method and basis set combinations. The DFT force field transformed to natural internal coordinates was corrected by a well‐established set of scale factors that were found to be transferable to the title compounds. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The Fourier transform infrared (FT‐IR) spectrum of N‐hydroxyphthalimide has been recorded in the range of 4000–400 cm−1, and the Fourier transform Raman (FT‐Raman) spectrum of N‐hydroxyphthalimide has been recorded in the range of 4000–50 cm−1. With the hope of providing more and effective information on the fundamental vibrations, the Density Functional Theory (DFT)‐Becke3‐Lee‐Yang‐Parr (B3LYP) level with 6‐31G* basis set has been employed in quantum chemical analysis, and normal coordinate analysis has been performed on N‐hydroxyphthalimide by assuming Cs symmetry. The computational wavenumbers are in good agreement with the observed results. The theoretical spectra obtained along with intensity data agree well with the observed spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Some seashells of the Philippine venus species and sea coral of Porites sp. were studied by means of FT‐Raman, Fourier transform infrared spectroscopy (FTIR) and Far‐FTIR spectroscopic methods. The Raman spectra show that both Porites sp. and P. venus are of aragonite‐structured CaCO3. Detailed spectral analysis, however, reveals some small differences, due to differences in the crystallite size or habit and to different minor element contents. IR spectra show that Porites sp. contains also some small quantities of calcite‐structured carbonates. The ν2 band (shoulder) of calcite at 875.7 cm−1 is present in the IR spectrum. The separation of the two ν2 bands (856.4 cm−1 for aragonite and 875.7 cm−1 for calcite) suggests the absence of solid solution of the two polymorphic phases of CaCO3. Spectroscopic results were confirmed also by X‐ray powder diffraction measurements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Some new Hofmann‐3‐phenylpropylamine‐type clathrates with chemical formulae of M(3‐phenylpropylamine)2 Ni(CN)4. 2G (MNi or Co, G = 1,2‐dichlorobenzene or 1,3‐dichlorobenzene) have been prepared and their Fourier transform infrared(FT‐IR; 4000–400 cm−1), far‐infrared (600–100 cm−1) and FT‐Raman (4000–60 cm−1) spectra are reported. The ligand molecule, guest molecules, polymeric sheet and metal‐ligand bands of the clathrates are assigned in detail. The compounds are also characterized by thermal gravimetric analysis (TGA), differential thermal analysis (DTA), elemental analysis and magnetic susceptibility measurements. From the results, the monodentate 3‐phenylpropylamine ligand molecule bonds to the metal atom of |M‐Ni(CN)4 | polymeric layers in the trans‐gauche‐gauche (TGG) form, and 1,2‐dichlorobenzene or 1,3‐dichlorobenzene molecules are guested by this structure revealing the inclusion ability of the host complexes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The Fourier transform Raman and IR spectra of betulin (lup‐20(29)‐ene‐3β,28‐diol) crystalline powder were recorded and analyzed. The vibrational wavenumbers and the corresponding vibrational assignments were theoretically studied using the Gaussian 03 package. The calculated vibrational wavenumbers with the B3LYP density functionals are generally consistent with the observed spectra. A complete vibrational characterization of betulin modes has been proposed here for the first time. Based on the vibrational analysis, two direct applications of the results have been described. It was shown that the outer bark of Betula Pendula Roth (the birch tree) contains betulin as a major component along with minor amounts of betulinic acid (BA), lupeol and other pentacyclic triterpenes derivatives. Since the major disadvantage of betulin is its low solubility, giving rise to serious problems in making pharmaceutical formulations, several guest–host type of complexes of betulin–cyclodextrins have been prepared and analyzed using FT‐Raman spectroscopy. Based on the vibrational analysis, it was concluded that the OH and CH2OH functional groups are free from chemical interactions with the cyclodextrin cavity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Point‐to‐point micro‐Raman and X‐ray diffraction (XRD) techniques were employed for characterization of minerals present in the pottery body of 27 glazed Byzantine and Ottoman pottery shreds, excavated at two different archaeological sites in the Republic of Macedonia: in Skopje (Skopsko Kale) and in Prilep (Markovi Kuli and Sv. Atanas Church). The Raman spectra of 18 Byzantine samples (dating from 12th−14th century) and nine Ottoman samples (dating from 17th−19th century) revealed 26 different minerals. XRD measurements were further performed on the same powder samples to validate the mineralogical assessment obtained by point‐to‐point micro‐Raman spectroscopy. Although only 13 different mineral phases were obtained by the XRD, the results obtained from the Raman and XRD spectra for the most abundant minerals in the investigated pottery bodies match quite well. However, the identification of the less abundant minerals in the clay matrixes from the XRD data was very difficult, if at all possible. The results emphasize the specifics of the applied techniques and their limits. Additionally, wavelength dispersive X‐ray fluorescence spectroscopy was used for the elemental analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A biochemical characterization of pathologies in biological tissue can be provided by Raman spectroscopy. Often, the raw spectrum is severely affected by fluorescence interference. We report and compare various spectra‐processing approaches required for the purification of Raman spectra from heavily fluorescence‐interfered raw spectra according to the shifted‐excitation Raman difference spectroscopy method. These approaches cover the entire spectra‐processing chain from the raw spectra to the purified Raman spectra. In detail, we compared (1) area normalization versus z‐score normalization, (2) direct reconstruction of the difference spectra versus reconstruction of zero‐centered difference spectra and (3) collective baseline correction of the reconstructed spectra versus piecewise baseline correction of the reconstructed spectra and, finally, (4) analyzed the influence of the shift of the excitation wavelength on the quality of the reconstructed spectra. Statistical analysis of the spectra showed that – in our experiments – the best results were obtained for the z‐score normalization before subtraction of the normalized spectra, followed by zero‐centering of the difference spectra before reconstruction and a piecewise baseline correction of the pure Raman spectra. With our equipment, a wavelength shift from 784 to 785 nm provided reconstructed spectra of best quality. The analyzed specimens were different tissue types of pigs, tissue from the oral cavity of humans and a model solution of dye dissolved in ethanol. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   

15.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Fourier Transform Raman spectroscopy (FT‐Raman) has been applied for the non‐destructive in‐situ analysis of pigments on differently colored flower petals of pansy cultivars (Viola x wittrockiana). The main target of the present study was to investigate how far the Raman mapping technique through FT‐Raman spectroscopy and cluster analysis of the Raman spectra is a potential method for the direct, in‐situ discrimination of flavonoids (flavonols against anthocyanins) and of carotenoids occurring in flowers, using intact and differently colored flower petal of Viola x wittrockiana for this case study. In order to get more information about the reliability of the direct in‐situ flavonoid detection by the Raman method, pigments extracts of the petals were separated by thin‐layer chromatography (TLC) and investigated by Raman spectroscopy. Hierarchical cluster analysis (HCA) of the Raman spectra from reference pigments (carotenoids, anthocyanins and flavonols), from areas of the flower petals, and from the TLC extracts allowed discriminating the various pigments, in particular flavonoids (flavonols against anthocyanins) and carotenoids. With a two‐dimensional Raman mapping technique, which provides a chemical image of the sample under investigation, we determined by cluster analysis the distribution of carotenoids, anthocyanins and flavonols from the outer layer of the petals, and by integrating through suitable spectral regions selected as characteristic markers for particular pigments their relative concentration could approximately be determined. We found a satisfactory correlation between the patterns seen on the visible images and the patterns on the chemical images obtained by Raman mapping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Band‐target entropy minimization (BTEM) was applied for the extraction of pure component Raman spectra from samples exhibiting a significant thermal background due to sample emission. In this method, singular value decomposition was first used to calculate the right singular vectors of the spectroscopic data matrix. Then the non‐noise right singular vectors were examined for localized spectral features, which were subsequently used for spectral recovery. These local features were targeted with the BTEM algorithm to recover the pure component Raman spectra. Accordingly, the interfering thermal background was removed. This method of analysis is applied to graphite and barium sulfate Raman spectroscopic data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Leptospermum scoparium (Mānuka) is the source of nectar for Unique Mānuka Factor (UMF) honey. The chemical component of interest to this study is dihydroxyacetone (DHA). DHA is the precursor for the chemical methylglyoxyl which is the main chemical responsible for the UMF activity in Manuka honey. Screening commercially bred plants for increased DHA synthesis in L. scoparium is a critical factor in growing the Manuka Honey industry in New Zealand. FT‐Raman spectroscopy, in combination with principal component analysis and partial least squares regression analysis, was investigated as an analytical tool for building a screening model for DHA in the nectar of L. scoparium. Leaf samples of seven cultivars of the species L. scoparium were collected in an attempt to correlate metabolic factors in the plant with DHA synthesis in the nectar. Leaf material was analysed using Fourier transform‐raman spectroscopy (FT‐Raman). The DHA levels in nectar samples of the same cultivars were measured using standard LC‐MS methods. This study showed that the application of multivariate analysis of FT‐Raman spectra from leaf material is a useful tool to screen for DHA potential in L. scoparium. The PLS regression shows that we can screen for DHA concentrations in the range of 3300–7600 mg/kg plus or minus 20% standard error and can distinguish low medium and high DHA synthesis in the group of plants studied. The model for predicting DHA concentrations is influenced by a significant contribution from the spectral variance due to beta‐carotene and other highly scattering compounds that are not directly correlated with UMF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号