首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular structures and vibrational properties of 1H‐imidazo[4,5‐b]pyridine in its monomeric and dimeric forms are analyzed and compared to the experimental results derived from the X‐ray diffraction (XRD), infrared (IR), and Raman studies. The theoretical data are discussed on the basis of density functional theory (DFT) quantum chemical calculations using Lee–Yang–Parr correlation functional (B3LYP) and 6‐31G(d,p) basis. This compound crystallizes in orthorhombic structure, space group Pna21(C2v9) and Z = 4. The planar conformation of the skeleton and presence of the N H···N hydrogen bond was found to be characteristic for the studied system. The temperature dependence of IR and Raman modes was studied in the range 4–294 K and 8–295 K, respectively. The normal modes, which are unique for the imidazopyridine derivatives are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The structures of 2‐substituted malonamides, YCH(CONR1R2)CONR3R4 (Y = Br, SO2Me, CONH2, COMe, and NO2) were investigated. When Y = Br, R1R2 = R3R4 = HEt; Y = SO2Me, R1–R4 = H and for Y = CONH2 or CONHPh, R1–R4 = Me, the structure in solution is that of the amide tautomer. X‐ray crystallography shows solid‐state amide structures for Y = SO2Me or CONH2, R1–R4 = H. Nitromalonamide displays an enol structure in the solid state with a strong hydrogen bond (OO distance = 2.3730 Å at 100 K) and d(OH) ≠ d(OH). An apparently symmetric enol was observed in solution, even in appreciable percentages in highly polar solvents such as DMSO‐d6, but Kenol values decrease on increasing the solvent polarity. The N,N′‐dimethyl derivative is less enolic. Acetylmalonamides display a mixture of enol on the acetyl group and amide in non‐polar solvents, and only the amide in DMSO‐d6. DFT calculations gave the following order of pKenol values for Y: H > CONH2 > COMe ≥ COMe (on acetyl) ≥ MeSO2 > CN > NO2 in the gas phase, CHCl3, and DMSO. The enol on the C?O group is preferred to the aci‐nitro compound, and the N? O? HO?C is less favored than the C?O? HO?C hydrogen bond. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The nature and strength of metal–ligand bonds in organotransition‐metal complexes are crucial to the understanding of organometallic reactions and catalysis. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–N bond energies of para‐substituted anilinyldicarbonyl(η5‐cyclopentadienyl)iron [p‐G‐C6H4NH(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4NHFp (1), where G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2] and para‐substituted α‐acetylanilinyldicarbonyl(η5‐cyclopentadienyl)iron [p‐G‐C6H4N(COMe)(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4N(COMe)Fp (2)] complexes. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe–N)'s. The linear correlations [r = 0.98 (g, 1a), 0.93 (g, 2b)] between the substituent effects of heterolytic Fe–N bond energies [ΔΔHhet(Fe–N)'s] of series 1 and 2 and the differences of acidic dissociation constants (ΔpKa) of N–H bonds of p‐G‐C6H4NH2 and p‐G‐C6H4NH(COMe) imply that the governing structural factors for these bond scissions are similar. And the linear correlations [r = ?0.99 (g, 1c), ?0.92 (g, 2d)] between ΔΔHhet(Fe–N)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–N)'s. ΔΔHhet(Fe–N)'s(1, 2) follow the captodative principle. MEα‐COMe, para‐Gs include the influences of the whole molecules. The correlation of MEα‐COMe, para‐Gs with σp? is excellent. MEα‐COMe, para‐Gs rather than ΔΔHhet(Fe–N)'s in series 2 are more suitable indexes for the overall substituent effects on ΔHhet(Fe–N)'s(2). Insight from this work may help the design of more effective catalytic processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The nature and strength of metal–ligand bonds in organotransition–metal complexes is crucial to the understanding of organometallic reactions and catalysis. The Fe‐N homolytic bond dissociation energies [ΔHhomo(Fe‐N)′s] of two series of para‐substituted Fp anilines p‐G‐C6H4NHFp [1] and p‐G‐C6H4N(COMe)Fp [2] were studied using the Hartree–Fock (HF) and the density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2 and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO and NMe2. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe‐N)′s. B3LYP can also satisfactorily predict the α and remote substituent effects on ΔHhomo(Fe‐N)′s [ΔΔHhomo(Fe‐N)′s]. The good correlations [r = 0.96 (g, 1), 0.99(g, 2)] of ΔΔHhomo(Fe‐N)′s in series 1 and 2 with the substituent σp+ constants imply that the para‐substituent effects on ΔHhomo(Fe‐N)′s originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. ΔΔHhomo(Fe‐N)′s(1,2) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The 1H NMR titration method is used to investigate through‐space and through‐bond effects on the association of diols with pyridine in benzene. Alkan‐1,n‐diols (n goes from 2 to 10), DL and meso isomers of butan‐2,3‐, pentan‐2,4‐ and hexan‐2,5‐diols, two adamantane diols and a bicyclo[2.2.2]octane diol are compared with alkanols. The –CH2OH groups of the tri‐ and bicyclic compounds behave as if they were independent, with limiting OH proton shifts (at very low concentration) and both the first and the second association constants similar to those of a primary alcohol. In contrast, the alkane diols, with n = 2–4, display unusually high limiting shifts, ranging from 1.0 to 1.5 ppm (2.1 ppm for one methyl‐substituted diol). For these diols the first dissociation constant and the sum of the OH proton shifts in the 1:1 pyridine: diol complex are enhanced. This may be attributed to small cooperative effects, implying intramolecular hydrogen bonding, for n = 3 and 4, but for n = 2 a through‐bond effect accounts for most of the increase. Substituent interaction falls off sharply for n = 5 and is practically negligible for n = 10, for which the second association constant is close to the first. A sterically hindered BiEDOT diol, 2,2′‐bis{(3,4‐ethylenedioxythienyl)‐5‐[3‐(2,2,4,4‐tetramethylpentan‐3‐ol)]} behaves like the polycyclic compounds, with the two ? C(t‐Bu)2OH groups independent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Knowledge of the strength of the metal–ligand bond breaking and formation is fundamental for an understanding of the thermodynamics underlying many important stoichiometric and catalytic organometallic reactions. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe―C bond energies of para‐substituted benzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐C6H4CH2Fp [1, G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, NMe2; Fp = (η5‐C5H5)(CO)2Fe], and para‐substituted α‐cyanobenzyldicarbonyl(η5‐cyclopentadienyl)iron, p‐G‐PANFp [2, PAN = C6H4CH(CN)]. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe―C)'s. The good linear correlations [r = 0.98 (g, 1a), 0.99 (g, 2b)] between the substituent effects of heterolytic Fe―C bond energies [ΔΔHhet(Fe―C)'s] of series 1 and 2 and the differences of acidic dissociation constants (ΔpKa) of C―H bonds of p‐G‐C6H4CH3 and p‐G‐C6H4CH2CN imply that the governing structural factors for these bond scissions are similar. And the excellent linear correlations [r = ?1.00 (g, 1c), ?0.99 (g, 2d)] between ΔΔHhet(Fe―C)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe―C)'s. ΔΔHhet(Fe―C)'s(1, 2) follow the Capto‐dative Principle. The detailed knowledge of the factors that determine the Fp―C bond strengths would greatly aid in understanding reactivity patterns in many processes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A new merocyanine dye, 1,3‐Dimethyl‐5‐{(thien‐2‐yl)‐[4‐(1‐piperidyl)phenyl]methylidene}‐ (1H, 3H)‐pyrimidine‐2,4,6‐trione 3 , has been synthesized by condensation of 2‐[4‐(piperidyl)benzoyl]thiophene 1 with N,N′‐dimethyl barbituric acid 2 . The solvatochromic response of 3 dissolved in 26 solvents of different polarity has been measured. The solvent‐dependent long‐wavelength UV/Vis spectroscopic absorption maxima, vmax, are analyzed using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability), α (hydrogen‐bond donating capacity), and β (hydrogen‐bond accepting ability) in terms of the well‐established linear solvation energy relationship (LSER): (1) The solvent independent coefficients s , a , and b and (vmax)0 have been determined. The McRae equation and the empirical solvent polarity index, ET(30) have been also used to study the solvatochromism of 3 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
One of the most fundamental properties in chemistry is the bond dissociation energy, the energy required to break a specific bond of a molecule. In this paper, the Fe–N homolytic bond dissociation energies [ΔHhomo(Fe–N)'s] of 2 series of (meta‐substituted anilinyl)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4NHFp ( 1 )] and (meta‐substituted α‐acetylanilinyl)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4N(COMe)Fp ( 2 )] were studied using density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G is NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao‐Perdew‐Staroverov‐Scuseria, Minnesota 2006, and Becke's power‐series ansatz from 1997 with dispersion corrections functionals can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–N)'s. The ΔΔHhomo(Fe–N)'s ( 1 and 2 ) conform to the captodative principle. The polar effects of the meta‐substituents show the dominant role to the magnitudes of ΔΔHhomo(Fe–N)'s. σα· and σc· values for meta‐substituents are all related to polar effects. Spin‐delocalization effects of the meta‐substituents in ΔΔHhomo(Fe–N)'s are small but not necessarily zero. RE plays an important role in determining the net substituent effects on ΔHhomo(Fe–N)'s. Insight from this work may help the design of more effective catalytic processes.  相似文献   

9.
First principles molecular orbital and plane‐wave ab initio calculations have been used to investigate the structural and energetic properties of a new cage compound 2, 4, 6, 8, 12‐pentanitro‐10‐(3, 5, 6‐trinitro (2‐pyridyl))‐2, 4, 6, 8, 12‐hexaazatetracyclo [5.5.0.03,11.05,9]dodecane (PNTNPHATCD) in both the gas and solid phases. The molecular orbital calculations using the density functional theory methods at the B3LYP/6‐31G(d,p) level indicate that both the heat of formation and strain energy of PNTNPHATCD are larger than those of 2, 4, 6, 8, 10, 12‐hexanitro‐2, 4, 6, 8, 10, 12‐hexaazatetracyclo [5.5.0.0.0] dodecane (CL‐20). The infrared spectra and the thermodynamic property in gas phase were predicted and discussed. The calculated detonation characteristics of PNTNPHATCD estimated using the Kamlet–Jacobs equation equally matched with those of CL‐20. Bond‐breaking results on the basis of natural bond orbital analysis imply that C–C bond in cage skeleton, C–N bond in pyridine, and N–NO2 bond in the side chain of cage may be the trigger bonds in the pyrolysis. The structural properties of PNTNPHATCD crystal have been studied by a plane‐wave density functional theory method in the framework of the generalized gradient approximation. The crystal packing predicted using the Condensed‐phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields belongs to the Pbca space group, with the lattice parameters a = 20.87 Å, b = 24.95 Å, c = 7.48 Å, and Z = 8, respectively. The results of the band gap and density of state suggest that the N–NO2 bond in PNTNPHATCD may be the initial breaking bond in the pyrolysis step. As the temperature increases, the heat capacity, enthalpy, and entropy of PNTNPHATCD crystal all increase, whereas the free energy decreases. Considering that the cage compound has the better detonation performances and stability, it may be a superior high energy density compound. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We present a theoretical investigation about the excited state dynamical mechanism of 2‐(4′‐N,N‐dimethylaminophenyl)‐imidazo[4,5‐c]pyridine (DMAPIP‐c). Within the framework of density functional theory and time‐dependent density functional theory methods, we reasonably repeat the experimental electronic spectra, which further confirm the theoretical level used in this work is feasible. Given the best complex model, 3 methanol (MeOH) solvent molecules should be connected with DMAPIP‐c forming DMAPIP‐c‐MeOH complex in both ground state and excited state. Exploring the changes about bond lengths and bond angles involved in hydrogen bond wires, we find the O7‐H8···N9 one should be largely strengthened in the S1 state, which plays an important role in facilitating the excited state intermolecular proton transfer (ESIPT) process. In addition, the analyses about infrared vibrational spectra also confirm this conclusion. The redistribution about charges distinguished via frontier molecular orbitals based on the photoexcitation, we do find tendency of ESIPT reaction due to the most charges located around N9 atom in the lowest unoccupied molecular orbital. Based on constructing the potential energy curves of both S0 and S1 states, we not only confirm that the ESIPT process should firstly occur along with hydrogen bond wire O7‐H8···N9, but also find a low potential energy barrier 8.898 kcal/mol supports the ESIPT reaction in the S1 state forming DMAPIP‐c‐MeOH‐PT configuration. Subsequently, DMAPIP‐c‐MeOH‐PT could twist its dimethylamino moiety with a lower barrier 3.475 kcal/mol forming DMAPIP‐c‐MeOH‐PT‐TICT structure. Our work not only successfully explains previous experimental work but also paves the way for the further applications about DMAPIP‐c sensor in future.  相似文献   

12.
In this paper we investigate the solvation of silver bis(trifluoromethylsulfonyl)imide salt (AgTFSI) in 1‐ethyl‐3‐methylimidazolium TFSI [EMI][TFSI] ionic liquid by combining Raman and infrared (IR) spectroscopies with density functional theory (DFT) calculations. The IR and Raman spectra were measured in the 200–4000 cm−1 spectral region for AgTFSI/[EMI][TFSI] solutions with different concentrations ([AgTFSI] <0.2 mole fraction). The analysis of the spectra shows that the spectral features observed by dissolution of AgTFSI in [EMI][TFSI] solution originate from interactions between the Ag+ cation and the first neighboring TFSI anions to form relatively stable Ag complexes. The ‘gas phase’ interaction energy of a type [Ag(TFSI)3]2− complex was evaluated by DFT calculations and compared with other interionic interaction energy contributions. The predicted spectral signatures because of the [Ag(TFSI)3]2− complex were assessed in order to interpret the main IR and Raman spectral features observed. The formation of such complexes leads to the appearance of new interaction‐induced bands situated at 753 cm−1 in Raman and at 1015 and 1371 cm−1 in IR, respectively. These specific spectral signatures are associated with the ‘breathing’ mode and the S–N–S and S–O stretching modes of the TFSI anions engaged in the complex. Finally, all these findings are discussed in terms of interaction mechanisms enabling the electrodeposition characteristics of silver from AgTFSI/[EMI][TFSI] IL‐based electrolytic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The Raman and Infrared (IR) spectra of poly(methyl methacrylate) (PMMA) membranes plasticized by ionic liquids of the (1 − x)[1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)],xLiTFSI type, where BMI+ is the 1‐butyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, are analyzed for a lithium bis(trifluoromethane sulfone)imide (LiTFSI) mole fraction x = 0.23 and PMMA contents from 0 to 50 wt%. The lithium is found to have an average coordination of about three CO groups and less than one TFSI anion. It plays the role of a cross‐linker between the ester groups of PMMA and the nonvolatile ionic liquid. Addition of PMMA to the (1 − x)(BMITFSI),xLiTFSI ionic liquid lowers the conductivity but might improve the lithium transference number by transforming the [Li(TFSI)2] anionic clusters present in the pure ionic liquid into a mixed coordination by ester groups and TFSI anions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Intramolecular hydrogen bonding in the primarily and secondarily substituted quinoline‐2‐carboxamides and their N‐oxides has been studied in the solution by multinuclear NMR spectroscopy. Hydrogen bonding patterns and supramolecular arrangement in the solid state have been determined by single crystal X‐ray analysis. In quinoline‐2‐carboxamides weak, nonlinear intramolecular N? H…N hydrogen bond is present, but in the solid state the intermolecular hydrogen bonds and packing forces are the factors that decide on the properties of 3D structures. In quinoline‐2‐carboxamide N‐oxides the most important structural features are the intramolecular hydrogen bonds. Details of different weak interactions and resulting 3D arrangement of molecules are discussed. In the solution, two separate 1H signals are observed for the primary quinoline‐2‐carboxamides in the range from ca. 5.8 to 8.1 ppm. The chemical shifts of the NH group's proton for studied R′‐quinoline‐2‐R‐carboxamides are in the range from 8.1 to 8.4 ppm. For the N‐oxide of 4‐R′‐quinoline‐2‐carboxamides (R′ = H, Me, OPh, Cl and Br), the values of the proton chemical shifts of the NH group in the range from 10.78 to 11.38 ppm (for primary amides) indicating that this group forms hydrogen bonds with the oxygen of the N‐oxide group. This bond is stronger than the N? H…N bond in quinoline‐2‐carboxamides. For the secondary amide N‐oxides, the δ(NH) values are increasing from 11.25 to 11.77 ppm in the sequence of substituents 4‐Br < 4‐Cl < 4‐H < 4‐Me < 4‐OPh. For 4‐substituted compounds these values depend also on the substituent effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the intermolecular hydrogen‐abstraction reaction of the triplet state of 4‐benzoylpyridine (4‐BPy) in 2‐propanol solvent is reported. The TR3 results reveal a rapid hydrogen abstraction (<10 ns) by the 4‐BPy triplet state (nπ*) with the 2‐propanol solvent, leading to formation of a 4‐BPy ketyl radical and an associated dimethyl ketyl radical partner from the solvent. The recombination of these two radical species occurs with a time constant about 200 ns to produce a para‐N‐LAT (light absorbing transient). The structure, major spectral features, and identification of the ketyl radical and the para‐N‐LAT coupling complex have been determined and confirmed by comparison of the TR3 results with results from density functional theory (DFT) calculations. A reaction pathway for the photolysis of 4‐BPy in 2‐propanol deduced from the TR3 results is also presented. The electron‐withdrawing effect of the heterocyclic nitrogen for 4‐BPy on the triplet state makes it have a significantly higher chemical reactivity for the hydrogen abstraction with 2‐propanol compared to the previously reported corresponding benzophenone triplet reaction under similar reaction conditions. In addition, the 4‐BPy ketyl radical reacts with the dimethyl ketyl radical to attach at the para‐N atom position of the pyridine ring to form a cross‐coupling product such as 2‐[4‐(hydroxy‐phenyl‐methylene)‐4h‐pyridin‐1‐yl]‐propan‐2‐ol instead of attacking at the para‐C atom position as was observed for the corresponding benzophenone reaction reported in an earlier study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The adsorption of 2‐amino‐5‐cyanopyridine (2‐ACP) was investigated in solution at different pH values by i n situ surface‐enhanced Raman scattering (SERS) spectroscopy combined with the electrochemical method. The assignments of the main bands were first performed on the basis of the spectral features of similar compounds and with the help of density functional theory calculations. The results revealed that the adsorption and the interfacial structure of 2‐ACP on the Au electrode depended on the applied potential and the pH values of the solution. In the natural solution, 2‐ACP was adsorbed on the surface with a vertical orientation by the CN group from − 0.4 to − 1.0 V, whereas in the − 0.4 to 0.8 V range, the N atom of the pyridine ring was bound to the surface. A transition region for the reorientation of the two adsorption modes was observed from − 0.8 to − 0.4 V. A flat configuration was preferred at an extremely negative potential. A similar surface adsorption behavior was observed in the alkali environment, while the Stark effect slope decreased because of the adsorption of OH. Due to the protonation of N atom in the acidic solution, the potential region for the coexistence of two configurations ranged from − 0.4 to 0.2 V. Additionally, a similar adsorption configuration was proposed on the Au colloids at various pH values. The results revealed that the adsorption behavior became more complex on colloidal surfaces than that on a rigid electrode surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The reaction of 3,5‐bis(methoxycarbonyl)‐4‐oxo‐4H‐pyrazole 1,2‐dioxide (1a) with 1,3,5‐cycloheptatriene (2b) gave a mixture of the novel endo‐[4 + 6]‐cycloadduct (4ab), anti‐exo‐[4 + 2]‐cycloadduct (5ab), and the heterocage (6ab) derived from the intramolecular 1,3‐dipolar cycloaddition reaction of the syn‐endo‐[4 + 2]‐cycloadduct. Analogous endo‐[4 + 6] selectivity in 1,3‐dipolar cycloadditions has not been reported previously. The X‐ray analysis indicates that 6ab has a very long Nsp3–Nsp3 bond distance of 1.617(4) Å. The cycloaddition behaviour is discussed on the basis of transition‐state structures optimized at the B3LYP/6‐31G(d) level of theory, from which predictions of the peri‐, regio‐, and stereoselectivities agreed well with the experimental results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号