首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
采用多层衍射元件是实现宽波段高衍射效率的有效方法,设计了一个含双层衍射元件-30℃~70℃消热差系统。通过合理选择衍射面的基底材料,优化衍射表面的浮雕深度,设计出红外宽波段高衍射效率的消热差光学系统。设计结果表明,在整个设计温度范围内,该光学系统成像质量良好,光学传递函数在16lp/mm时均在0.6以上。  相似文献   

2.
红外双波段双层谐衍射光学系统设计   总被引:9,自引:0,他引:9  
范长江  王肇圻  吴环宝  张梅 《光学学报》2007,27(7):266-1270
将谐衍射透镜应用在传统红外单波段佩茨瓦尔(Petzval)物镜上,设计得到工作波段处于3.4~4.2μm和8~11μm的红外双波段单层谐衍射光学系统。但单层谐衍射元件的衍射效率只在设计波长处衍射效率最高,随着波长相对设计中心波长向两侧偏离,主衍射级次的衍射效率逐渐下降。为提高含单层谐衍射元件光学系统的衍射效率,基于双层衍射元件衍射效率表达式研究了双层谐衍射元件的结构优化,给出了优化方法。设计出佩茨瓦尔型红外双波段双层谐衍射光学系统,其在3.4~4.2μm和8~11μm两个工作波段的衍射效率均达到90%以上,相比含有单层谐衍射面的光学系统衍射效率有了很大提升,提高了像面衬比度,完善了系统成像质量。  相似文献   

3.
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.  相似文献   

4.
讨论了多层衍射光学元件的光学成像性质.给出了优化设计多层衍射光学元件最大光栅厚度的方法,分析了构成多层结构的每块单层衍射元件的衍射效率对整体衍射效率的贡献作用.在0.436~0.656 μm的可见光波段,多层衍射光学元件最低衍射效率可达到98%以上,克服了单层衍射元件偏离设计波长后衍射效率显著下降的缺点,改善了宽波段衍射效率.将多层衍射光学元件应用在折、衍射混合光学系统中能够明显提高系统的成像质量,同时使得光学系统体积减小,重量减轻,并且在某些系统中可以避免使用昂贵的特殊材料,从而可以降低光学系统的成本价格.  相似文献   

5.
建立了环境温度对双层衍射元件衍射效率影响的数学模型,给出高衍射效率衍射元件的优化设计方法。通过选择宽温度范围内设计波长对,计算衍射元件微结构参数,确保双层衍射元件在基底材料确定的情况下仍具有高衍射效率,发现混合成像光学系统具有最佳像质。最后设计了一套含有此双层衍射元件的中波红外混合成像光学系统。结果表明,与传统设计相比,本文方法能够有效地改善混合成像光学系统的无热化设计像质,设计结果更好。  相似文献   

6.
为消除单层衍射元件在可见光宽波段中低的衍射效率对成像质量的影响,根据探测器的量子效率,提出了设计波长的选择方法,构建了可见光宽波段折衍混合系统受衍射效率影响的点扩散函数(PSF)模型。使用构建的PSF模型进行图像复原,提高了折衍射混合系统的图像质量。为了验证所提方法的有效性,将单层衍射光学元件引入目前已有的专利物镜系统中进行优化设计,优化后的系统中不仅光学元件的数量得到了减少,还将波段范围从486.1~656.3 nm扩展至400.0~800.0 nm。利用所提方法对波段范围扩展后的低衍射效率图像进行复原,复原后的图像质量不论在主观上还是客观上都有明显提升,这说明所提方法可用于含单层衍射元件的可见光宽波段系统设计。  相似文献   

7.
于斌  李恒  陈丹妮  牛憨笨 《物理学报》2013,62(15):154206-154206
发展能实时检测完整细胞内多个生物分子随时空变化的单分子探测和追踪技术, 对于研究生命过程的分子机理具有重要意义. 在变形光栅多阶成像和双螺旋点扩散函数成像方法的基础上, 基于波前编码的原理, 提出将二者优化结合, 获得全新的衍射光学元件, 该器件同时具有多重平面成像和双螺旋点扩散函数成像的功能, 旨在解决活细胞内单分子探测和追踪技术中的大景深探测难题. 设计和制备了该器件, 并基于该器件搭建了显微成像系统, 实验模拟证明该衍射光学元件同时可实现轴向12 μ的探测范围, 与理论设计结果相符合, 从而有效扩大了显微镜系统的景深, 证明了设计的可行性. 关键词: 多分子追踪 衍射光学元件 变形光栅 双螺旋点扩散函数  相似文献   

8.
基于衍射元件的特殊成像性质,使用双层衍射元件进行双波段红外光学系统设计已成为研究热点。使用双层衍射元件能够有效提升宽波段的衍射效率,在简化系统结构的基础上提高像质。将红外成像系统设计为制冷型结构,能够消除背景噪声干扰,保证100%的冷光阑效率。基于带宽积分平均衍射效率最大化方法,设计了一款含有双层衍射元件的制冷型双波段红外光学成像系统,实现了在双波段红外和宽温度范围下的无热化设计。光学系统含有三片透镜,仅由两种材料组成,入瞳直径为80 mm,焦距为100 mm,F数为1.25,有效视场为6°,工作波段为3.7~4.8μm和8.0~12.0μm,工作环境温度为-40~60℃。分析结果表明,在整个温度范围内,在17 lp/mm截止频率处,双波段红外光学系统所有视场的调制传递函数分别高于0.78和0.59,同时双层衍射元件在红外双波段的带宽积分平均衍射效率分别为99.35%和98.73%,综合带宽积分平均衍射效率为99.04%。此光学系统的结构设计简单,成像质量好,在军事和商业应用中具有一定优势。  相似文献   

9.
为了解决成像流式细胞仪多色、宽波段、长工作距离以及大数值孔径等难点,设计了1款多光谱成像流式细胞仪光学系统。系统基于模块化设计思想,灵活运用部分和整体的优化方法,保证各模块的相对独立性;显微物镜引入衍射元件对宽谱段色差进行校正,保证在全波段下成像质量均达到理想的性能指标;多光谱分解镜组采用二向色镜堆栈分光,多重结构同时优化6个通道,大大降低了系统对色差的校正难度。全局优化得到最终的光学系统,放大倍率为60倍,视场为60μm×128μm,波段为420~800nm,6个分光通道,分辨率达到0.5μm,成像质量接近衍射极限。  相似文献   

10.
折/衍混合红外光学系统的消热差设计   总被引:2,自引:4,他引:2  
研究了衍射光学元件的温度特性以及混合红外光学系统的消热差设计方法.设计了工作在3.7~4.8μm,视场4.5°,具有100%冷光阑效率的折射/衍射混合红外光学系统.该系统在-30~70℃温度范围内成像质量接近衍射极限,可用于像元尺寸为30 μm的制冷型凝视焦平面阵列探测器上.  相似文献   

11.
为了实现高像质相机低成本、小型化的需求,本文提出了一种大视场简单光学系统的光学-算法协同设计方法,并通过图像复原算法校正简单光学系统的残余像差。首先,针对大视场光学系统,对空间变化的交叉通道去卷积算法进行改进,加入倍率色差校正,使图像复原算法可显著去除色差的影响。然后,在光学设计过程中,放开色差的约束,并专注优化绿色通道的像质,使其成像锐利,在后期交叉通道去卷积算法中有助于红、蓝两通道图像复原。利用该方法设计了一个由两片同种材料的镜片构成的大视场简单光学系统。系统焦距为50 mm,全视场为46°,F数为5. 6,探测器分辨率为1 000万像素。实验结果表明:本文设计的两片镜、大视场简单光学系统的成像质量可媲美三片式库克镜头,明显优于纯图像复原的结果。本文方法实现了大视场简单光学系统的设计,并能够通过系统最终获得高分辨率、高像质图像。  相似文献   

12.
折衍射混合复消色差望远物镜中的色球差   总被引:2,自引:1,他引:1  
一个正透镜、一个负透镜及一个衍射光学元件以不同的组合可以构成两种折衍射混合光学系统.当这两种系统消球差、彗差及复消色差后会产生不同的色球差.通过赛德尔像差理论,分析了这两种结构产生不同色球差的原因.计算表明当衍射光学元件以负透镜的平面为基底时产生的色球差为以正透镜的平面为基底时产生的色球差的7倍.对衍射光学元件以负透镜的平面为基底的情形,提出了减小系统色球差的解决办法,使系统色球差减小到0.307 mm.另外设计了一个传统复消色差光学系统,并和折衍射混合光学系统进行了比较,分析表明,衍射光学元件可代替传统光学系统中的特殊光学材料并使系统达到相同的成像质量.最后讨论了衍射光学元件的衍射效率对系统成像质量的影响.  相似文献   

13.
李斐 《物理学报》2012,61(23):13-21
大气湍流、系统像差等因素会使入射光的波前发生畸变,从而降低成像系统的成像质量.相位差图像复原技术是针对波前畸变发展起来的图像复原方法,它具有无需参考目标和退化函数、收敛性好等优点,可以提高图像的分辨率和清晰度,增加图像的信息量,改善图像的视觉效果,在图像复原领域有着广阔的应用前景.本文对相位差图像复原技术进行了研究,借用光学系统中光学传递函数、调制传递函数和点扩散函数的概念对相位差图像复原技术的性能进行了分析,并进行了数值仿真和实验验证.结果表明,相位差图像复原技术不仅可以克服像差对成像质量的影响,而且可以对截止频率以内的低频信息进行增强,提高图像的对比度,从而使获得的图像优于衍射受限系统所成的像.  相似文献   

14.
双层衍射光学元件可以在宽波段范围内获得高的衍射效率。加工误差会导致带宽积分平均衍射效率的下降,进而影响折衍射混合成像光学系统的传递函数。基于位相延迟和带宽积分平均衍射效率的表达式,建立了双层衍射光学元件加工误差与带宽积分平均衍射效率的数学关系。分析了应用于8~12 mm长波红外光学系统中的两种加工误差对双层衍射光学元件衍射效率的影响。采用带宽积分平均衍射效率,可以直接评价宽波段光学系统的成像质量。通过带宽积分平均衍射效率和双层衍射光学元件加工误差的关系,可以分析含有双层衍射元件混合光学系统的调制传递函数。  相似文献   

15.
基于双泽尼克多项式推导稀疏孔径光学系统与视场相关的广义光瞳函数,以Golay3稀疏孔径成像系统为例,通过ZEMAX软件进行光学设计和数据拟合获得广义光瞳函数的双泽尼克多项式系数,根据傅里叶变换关系计算得到稀疏孔径光学系统的调制传递函数(MTF),并针对不同视场稀疏孔径光学系统进行成像模拟和图像复原。结果表明,调制传递函数的理论计算结果与ZEMAX设计结果一致,利用双泽尼克多项式可以表示不同视场稀疏孔径光学系统的成像特性。构建与视场相关的维纳滤波器进行图像复原,可有效提高不同视场稀疏孔径光学系统的成像质量。  相似文献   

16.
多级衍射元件在衍射望远系统消色差领域的应用逐渐成为热点。基于赛德尔三级像差理论,对由多级衍射光学元件、折射光学元件和菲涅耳衍射元件三元件组合的光学系统展开分析。在400~700 nm工作波段,通过数学推导校正表面系统的球差,同时实现消色差及复消色差。对系统在平面、球面和非球面不同面型下的成像质量进行比对。当系统为非球面设计时,调制传递函数在截止频率50 lp/mm处高于0.6683,优于平面和球面设计,衍射圈入能量更高,成像质量更好。该研究为将多级衍射元件组合系统运用到消色差领域提供了参考。  相似文献   

17.
提出了一种基于非球面固定校正元件的椭球形窗口光学系统设计方法。结合广义科丁顿公式及几何光学原理,推导出非球面校正元件的像散表达式,在此基础上,以消像散和正弦条件作为非球面校正元件像差评价参数,采用最小二乘法拟合出满足消像散及彗差的非球面面形方程。并建立以泽尼克(Zernike)多项式特殊优化函数取代传统的光学系统评价函数,克服了采用传统光学设计方法设计椭球形窗口光学系统时系统评价函数收敛缓慢的问题。成像光学系统设计时通过比对不同材料匹配实现了光学系统的无热化。给出了完整的椭球形窗口光学系统的设计,设计结果表明,系统的调制传递函数在整个扫描视场范围内接近衍射极限。  相似文献   

18.
8~14μm波段折衍混合红外光学系统的热补偿设计   总被引:1,自引:0,他引:1  
张羽  杨长城  杨坤涛 《光学学报》2005,25(11):535-1538
大多数军用和空间光学仪器的工作环境温度变化范围都较大,温度变化时光学元件的曲率、厚度和间隔都将发生变化,同时元件基体材料的折射率及所在介质的折射率也将发生变化。由于红外光学材料的折射率温度系数dn/dT较大,环境温度对红外光学系统的影响显得尤为严重。因此在红外成像系统中不得不加入主动或被动补偿机构,以补偿温度变化造成像面移动所引起的系统性能的降低。利用衍射元件独特的温度特性实现红外光学系统热补偿设计的方法,设计了波段为8~14μm、视场为16。的折衍混合红外光学系统。该系统使用硒化锌和锗两种红外材料,在一40~60℃的温度范围内的成像质量接近衍射极限,并且体积小、结构简单,重量轻。  相似文献   

19.
提出了单视点约束红外折反射全向成像系统单次成像实现全视场(FOV)清晰的一种参数设计优化方法。根据应用需求设计出符合单视点约束的初始系统参数;提出镜面虚景深的概念优化折射光学组参数。利用ZEMAX软件的理想系统仿真验证了所提出的设计方法实现系统全视场清晰成像的可行性,并且该设计方法能同时满足视场范围和轴向尺寸等方面的要求。从仿真结果还可知,大口径反射镜镜面有利于提高光学系统成像质量,而增大曲面离心率有利于减小系统轴向尺寸。  相似文献   

20.
非制冷长波红外热像仪折衍混合双视场光学系统设计   总被引:1,自引:0,他引:1  
根据衍射光学元件具有大的负向色散特性,将衍射光学元件应用于红外双视场光学系统中,根据傅里叶光学分析衍射光学元件(DOE)的消色差,列表对比折射透镜与衍射光学透镜的特性,并给出变倍比为4∶1可用作非制冷红外热像仪的光学系统的具体设计实例.系统采用切入式变焦方式,在短焦时切入2片透镜实现宽视场,通过引入二元面和非球面提高了成像质量.设计结果表明:在空间频率11 lp/mm处,短焦距40 mm时,各个视场的MTF值均大于0.6;长焦距160 mm时,各个视场的MTF值均大于0.7,宽视场和窄视场都具有较好的成像质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号