首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Raman spectroscopy has been used to characterise four natural halotrichites: halotrichite FeSO4.Al2(SO4)3. 22H2O, apjohnite MnSO4.Al2(SO4)3.22H2O, pickingerite MgSO4.Al2(SO4)3.22H2O and wupatkiite CoSO4.Al2(SO4)3.22H2O. A comparison of the Raman spectra is made with the spectra of the equivalent synthetic pseudo‐alums. Energy dispersive X‐ray analysis (EDX) was used to determine the exact composition of the minerals. The Raman spectrum of apjohnite and halotrichite display intense symmetric bands at ∼985 cm−1 assigned to the ν1(SO4)2− symmetric stretching mode. For pickingerite and wupatkiite, an intense band at ∼995 cm−1 is observed. A second band is observed for these minerals at 976 cm−1 attributed to a water librational mode The series of bands for apjohnite at 1104, 1078 and 1054 cm−1, for halotrichite at 1106, 1072 and 1049 cm−1, for pickingerite at 1106, 1070 and 1049 cm−1 and for wupatkiite at 1106, 1075 and 1049 cm−1 are attributed to the ν3(SO4)2− antisymmetric stretching modes of ν3(Bg) SO4. Raman bands at around 474, 460 and 423 cm−1 are attributed to the ν2(Ag) SO4 mode. The band at 618 cm−1 is assigned to the ν4(Bg) SO4 mode. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium‐carbonate minerals artinite and dypingite were studied by Raman spectroscopy. Intense bands are observed at 1092 cm−1 for artinite and at 1120 cm−1 for dypingite, attributed ν1 symmetric stretching mode of CO32−. The ν3 antisymmetric stretching vibrations of CO32− are extremely weak and are observed at 1412 and 1465 cm−1 for artinite and at 1366, 1447 and 1524 cm−1 for dypingite. Very weak Raman bands at 790 cm−1 for artinite and 800 cm−1 for dypingite are assigned to the CO32−ν2 out‐of‐plane bend. The Raman band at 700 cm−1 of artinite and at 725 and 760 cm−1 of dypingite are ascribed to CO32−ν2 in‐plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (1) an intense band at 3593 cm−1 assigned to the MgOH stretching vibrations and (2) the broad profile of overlapping bands at 3030 and 3229 cm−1 attributed to water stretching vibrations. X‐ray diffraction studies show that the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality, and explains why the Raman spectra of these minerals have not been previously or sufficiently described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The mineral dussertite, a hydroxy‐arsenate mineral with formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman spectroscopy complemented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved to be quite similar, although some minor differences were observed. In the Raman spectra of the Czech dussertite, four bands are observed in the 800–950 cm−1 region. The bands are assigned as follows: the band at 902 cm−1 is assigned to the (AsO4)3−ν3 antisymmetric stretching mode, the one at 870 cm−1 to the (AsO4)3−ν1 symmetric stretching mode, and those at 859 and 825 cm−1 to the As‐OM2 + /3+ stretching modes and/or hydroxyl bending modes. Raman bands at 372 and 409 cm−1 are attributed to the ν2 (AsO4)3− bending mode and the two bands at 429 and 474 cm−1 are assigned to the ν4 (AsO4)3− bending mode. An intense band at 3446 cm−1 in the infrared spectrum and a complex set of bands centred upon 3453 cm−1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen‐bonded (OH) units and/or water units in the mineral structure. The broad infrared band at 3223 cm−1 is assigned to the vibrations of hydrogen‐bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3− and (AsO3OH)2− units. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy at both 298 and 77 K has been used to study a series of selected natural smithsonites from different origins. An intense sharp band at 1092 cm−1 is assigned to the CO32− symmetric stretching vibration. Impurities of hydrozincite are identified by a band around 1060 cm−1. An additional band at 1088 cm−1 which is observed in the 298 K spectra but not in the 77 K spectra is attributed to a CO32− hot band. Raman spectra of smithsonite show a single band in the 1405–1409 cm−1 range assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional bands for the ν3g modes for some smithsonites is significant in that it shows distortion of the ZnO6 octahedron. No ν2 bending modes are observed for smithsonite. A single band at 730 cm−1 is assigned to the ν4 in phase bending mode. Multiple bands be attributed to the structural distortion are observed for the carbonate ν4 in phase bending modes in the Raman spectrum of hydrozincite with bands at 733, 707 and 636 cm−1. An intense band at 304 cm−1 is attributed to the ZnO symmetric stretching vibration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectra of brandholzite Mg[Sb2(OH)12]·6H2O were studied, complemented with infrared spectra, and related to the structure of the mineral. An intense Raman sharp band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low‐intensity band at 730 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low‐intensity Raman bands were found at 503, 526 and 578 cm−1. Corresponding infrared bands were observed at 527, 600, 637, 693, 741 and 788 cm−1. Four Raman bands observed at 1043, 1092, 1160 and 1189 cm−1 and eight infrared bands at 963, 1027, 1055, 1075, 1108, 1128, 1156 and 1196 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3240, 3383, 3466, 3483 and 3552 cm−1; infrared bands at 3248, 3434 and 3565 cm−1. The Raman bands at 3240 and 3383 cm−1 and the infrared band at 3248 cm−1 are assigned to water‐stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands in the OH stretching region are associated with O‐H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared (IR) spectroscopy have been used to study the mineral pharmacolite Ca(AsO3OH)· 2H2O. The mineral is characterised by an intense Raman band at 865 cm−1 assigned to the ν1 (AsO3)2− symmetric stretching mode. The equivalent IR band is found at 864 cm−1. The low‐intensity Raman bands in the range from 844 to 886 cm−1 provide evidence for ν3 (AsO3) antisymmetric stretching vibrations. A series of overlapping bands in the 300‐450 cm−1 region are attributed to ν2 and ν4 (AsO3) bending modes. Prominent Raman bands at around 3187 cm−1 are assigned to the OH stretching vibrations of hydrogen‐bonded water molecules and the two sharp bands at 3425 and 3526 cm−1 to the OH stretching vibrations of only weakly hydrogen‐bonded hydroxyls in (AsO3OH)2− units. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectroscopy lends itself to the studies of selenites, selenates, tellurites and tellurates as well as related minerals. The mineral schmiederite Pb2Cu2[(OH)4|SeO3|SeO4], is interesting, in that, both selenite and selenate anions occur in the structure. Raman bands of schmiederite at 1095 and 934 cm−1 are assigned to the symmetric and antisymmetric mode of the (SeO4)2− anions. For selenites, the symmetric stretching mode occurs at a higher position than the antisymmetric stretching mode, as is evidenced in the Raman spectrum of schmiederite. The band at 834 cm−1 is assigned to the symmetric (SeO3)2− units. The two bands at 764 and 739 cm−1 are attributed to the antisymmetric (SeO3)2− units. An intense, sharp band at 398 cm−1 is assigned to the ν2 bending mode. The two bands at 1576 and 1604 cm−1 are assigned to the deformation modes of the OH units. The observation of multiple OH bands supports the concept of a much distorted structure. This is based upon the four OH units coordinating the copper in a square planar structure. A single symmetric Raman band is observed at 3428 cm−1 and is assigned to the symmetric stretching mode of the OH units. The observation of multiple infrared OH stretching bands supports the concept of non‐equivalent OH units in the schmiederite structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Magnesium minerals are important for understanding the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm−1, attributed to the CO32−ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413 and 1474 cm−1 are assigned to the CO32−ν3 antisymmetric stretching modes. The CO32−ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm−1. A series of Raman bands at 708, 716, 728 and 758 cm−1 are assigned to the CO32−ν2 in‐plane bending mode. The Raman spectrum in the OH stretching region is characterized by bands at 3416, 3516 and 3447 cm−1. In the infrared spectrum, a broad band is found at 2940 cm−1, which is assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm−1 are attributed to MgOH stretching modes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Pure nesquehonite (MgCO3·3H2O)/Mg(HCO3)(OH)·2H2O was synthesised and characterised by a combination of thermo‐Raman spectroscopy and thermogravimetry with evolved gas analysis. Thermo‐Raman spectroscopy shows an intense band at 1098 cm−1, which shifts to 1105 cm−1 at 450 °C, assigned to the ν1CO32− symmetric stretching mode. Two bands at 1419 and 1509 cm−1 assigned to the ν3 antisymmetric stretching mode shift to 1434 and 1504 cm−1 at 175 °C. Two new peaks at 1385 and 1405 cm−1 observed at temperatures higher than 175 °C are assigned to the antisymmetric stretching modes of the (HCO3) units. Throughout all the thermo‐Raman spectra, a band at 3550 cm−1 is attributed to the stretching vibration of OH units. Raman bands at 3124, 3295 and 3423 cm−1 are assigned to water stretching vibrations. The intensity of these bands is lost by 175 °C. The Raman spectra were in harmony with the thermal analysis data. This research has defined the thermal stability of one of the hydrous carbonates, namely nesquehonite. Thermo‐Raman spectroscopy enables the thermal stability of the mineral nesquehonite to be defined, and, further, the changes in the formula of nesquehonite with temperature change can be defined. Indeed, Raman spectroscopy enables the formula of nesquehonite to be better defined as Mg(OH)(HCO3)·2H2O. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Raman spectroscopy has been used to study the rare‐earth mineral churchite‐(Y) of formula (Y,REE)(PO4) ·2H2O, where rare‐earth element (REE) is a rare‐earth element. The mineral contains yttrium and, depending on the locality, a range of rare‐earth metals. The Raman spectra of two churchite‐(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite‐(Y) downloaded from the RRUFF data base. The Raman spectra of churchite‐(Y) are characterized by an intense sharp band at 975 cm−1 assigned to the ν1 (PO43−) symmetric stretching mode. A lower intensity band observed at around 1065 cm−1 is attributed to the ν3 (PO43−) antisymmetric stretching mode. The (PO43−) bending modes are observed at 497 cm−12) and 563 cm−14). Some small differences in the band positions between the four churchite‐(Y) samples from four different localities were found. These differences may be ascribed to the different compositions of the churchite‐(Y) minerals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
《Infrared physics》1985,25(3):531-541
Sodalite absorption bands in the 50–350 cm−1 region were studied using Fourier transform spectroscopy. Vibrational modes were identified using chemical substitution, H2 and vacuum-annealing, and coloration studies. A bromosodalite band at 294 cm−1 was assigned to an Si—O—Al mode based on Ge substitutions for Si. A bromosodalite band at 200 cm−1 is assigned to an Na—cage vibration based on previous H2annealing studies and chemical substitution of Ge for Si, Ga for Al and Cl and I for Br. A 107 cm−1 band is the Na—Br related vibration, and substitution of 100% Cl for Br moved this band to 111 cm−1, H2 and vacuum-annealing studies show a correlation between the amount of Br removed from bromosodalite during annealing and the area of the 107 cm−1 band. A band at 68 cm−1 is the Na—Br mode based on 100% substitution of Cl for Br. Coloration studies in the 50–150 cm−1 region show no changes attributable to F-center formation.  相似文献   

12.
The vibrational spectra of gaseous and liquid 2‐propanol in the C–H stretching region of 2800 ~ 3100 cm−1 were investigated by polarized photoacoustic Raman spectroscopy and conventional Raman spectroscopy, respectively. Using two deuterated samples, that is, CH3CDOHCH3 and CD3CHOHCD3, the overlapping spectral features between the CH and CH3 groups were identified. With the aid of depolarization ratio measurements and density functional theory calculations, a new spectral assignment was presented. In the gas phase, the band at 2884 cm−1 was assigned to the overlapping of one CH3 Fermi resonance mode and a CH stretching of gauche conformer. The bands at 2917 and 2933 cm−1 were assigned to another two CH3 Fermi resonance modes, but the latter includes weak contribution from CH stretching of trans conformer. The bands at 2950 and 2983 cm−1 were assigned to CH3 symmetric and antisymmetric stretching, respectively. The spectral features of liquid 2‐propanol are similar to those in the gas phase except for the blue shift of CH and the red shift of CH3 band positions, which can be attributed to the intermolecular interaction in the liquid state. The new assignments not only clarify the confusions in previous studies from different spectral methods but also provide the reliable groundwork on spectral application of 2‐propanol in the futures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The titanium content of pyrope garnet can be quantified using the intensity of a Raman band at about 830 cm−1 that is normalized to the 363 cm−1 band using a spectrometer‐specific calibration using 10 to 15 chromian pyropes from Bohemia, Czech Republic. An accuracy of 0.025 wt% could be achieved for TiO2 contents between 0.17 and 0.67 wt% TiO2 with a Raman spectrometer with a spectral resolution of better than 3.9 cm−1. The technique can be used in petrological and gemmological studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The participation of hydrogen‐arsenate group (AsO3OH)2− in solid‐state compounds may serve as a model example for explaining and clarifying the behaviour of As and other elements during weathering processes in natural environment. The mineral geminite, a hydrated hydrogen‐arsenate mineral of ideal formula Cu(AsO3OH)·H2O, has been studied by Raman and infrared spectroscopies. Two samples of geminite of different origin were investigated and the spectra proved quite similar. In the Raman spectra of geminite, six bands are observed at 741, 812, 836, 851, 859 and 885 cm−1 (Salsigne, France), and 743, 813, 843, 853, 871 and 885 cm−1 (Jáchymov, Czech Republic). The band at 851/853 cm−1 is assigned to the ν1 (AsO3OH)2− symmetric stretching mode; the other bands are assigned to the ν3 (AsO3OH)2− split triply degenerate antisymmetric stretching mode. Raman bands at 309, 333, 345 and 364/310, 333 and 345 cm−1 are attributed to the ν2 (AsO3OH)2− bending mode, and a set of higher wavenumber bands (in the range 400–500 cm−1) is assigned to the ν4 (AsO3OH)2− split triply degenerate bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2289, 2433, 2737, 2855, 3235, 3377, 3449 and 3521/2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm−1. Two Raman bands at 2289 and 2433/2288 and 2438 cm−1 are ascribed to the strong hydrogen bonded water molecules. The Raman bands at 3235, 3305 and 3377/3152 and 3314 cm−1 may be assigned to the ν OH stretching vibrations of water molecules. Two bands at 3449 and 3521/3448 and 3521 cm−1 are assigned to the OH stretching vibrations of the (AsO3OH)2− units. The lengths of the O H···O hydrogen bonds vary in the range 2.60–2.94 Å (Raman) and 2.61–3.07 Å (infrared). Two Raman and infrared bands in the region of the bending vibrations of the water molecules prove that structurally non‐equivalent water molecules are present in the crystal structure of geminite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
《Surface science》1986,177(2):L971-L977
Molecular oxygen adsorbed on (110) and polycrystalline Cu surfaces has been investigated by UPS, XPS, AES, HREELS and LEED. Molecularly adsorbed O2 on the (110) surface shows the characteristic three-peak He II spectrum due to πg, πu and σg orbitals, accompanied by an O-O stretching frequency at 660 cm−1. On the polycrystalline Cu surface, adsorbed O2 shows the three peak He II spectra with a considerably smaller separation between the πu and σg band and two O-O stretching bands at 610 and 880 cm−1. O2 adsorbed on the Cu(110) surface gives rise to a (1 × 1) LEED pattern and characteristic K π1π1 transition in the Auger spectrum.  相似文献   

17.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopy complemented with infrared spectroscopy has been used to study a series of selected natural halogenated carbonates from different origins, including bastnasite, parisite and northupite. The position of CO32− symmetric stretching vibration varies with the mineral composition. An additional band for northupite at 1107 cm−1 is observed. Raman spectra of bastnasite, parisite and northupite show single bands at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− asymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the CaO6 octahedron. No ν2 Raman bending modes are observed for these minerals. The band is observed in the infrared spectra, and multiple ν2 modes at 844 and 867 cm−1 are observed for parisite. A single intense infrared band is found at 879 cm−1 for northupite. Raman bands are observed forthe carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for selected bastansites and parisites, indicating the presence of water and OH units in the mineral structure. The presence of such bands brings into question the actual formula of these halogenated carbonate minerals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Rutile‐structured nanocrystalline tin dioxide (SnO2) powder was synthesized by the chemical precipitation method using the precursor SnCl2• 5H2O. The SnO2 powder was annealed at different temperatures, namely, 600, 800 and 1000 °C. Micro‐Raman spectra were recorded for both the as‐grown and annealed SnO2 nanocrystalline samples. Micro‐Raman spectral measurements on the SnO2 nanoparticle show the first‐order Raman modes A1g (633 cm−1), E1g (475 cm−1) and B2g (775 cm−1), indicating that the grown SnO2 belongs to the rutile structure. The first‐order A1g mode is observed as an intense band, whereas the other two modes show low intensity. The full width at half‐maximum and band area of the Raman lines of SnO2 nanoparticle annealed at various temperatures were calculated. The effect of high‐temperature annealing on the vibrational modes of SnO2 was studied. The optical image of SnO2 nanocrystalline material was used to understand the surface morphology effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The mineral gerstleyite is described as a sulfosalt as opposed to a sulfide. This study focuses on the Raman spectrum of gerstleyite Na2(Sb,As)8S13·2H2O and makes a comparison with the Raman spectra of other common sulfides including stibnite, cinnabar and realgar. The intense Raman bands of gerstleyite at 286 and 308 cm−1 are assigned to the SbS3E antisymmetric and A1 symmetric stretching modes of the SbS3 units. The band at 251 cm−1 is assigned to the bending mode of the SbS3 units. The mineral stibnite also has basic structural units of Sb2S3 and SbS3 pyramids with C3v symmetry. Raman bands of stibnite Sb2S3 at 250, 296, 372 and 448 cm−1 are assigned to Sb S stretching vibrations and the bands at 145 and 188 cm−1 to S Sb S bending modes. The Raman band for cinnabar HgS at 253 cm−1 fits well with the assignment of the band for gerstleyite at 251 cm−1 to the S Sb S bending mode. Raman bands in similar positions are observed for realgar AsS and orpiment As2S3. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号