首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


2.
Summary: Nanowire lengths and length‐to‐width aspect ratios in regioregular poly(3‐hexylthiophene) (P3HT) were simply controlled through changes in the solvent vapor pressure during solidification. It is demonstrated that the nanowires grew by rod‐to‐rod association, in which the molecular long axis of the P3HT chains appeared to be well‐oriented parallel to the silicon substrate (Si/SiOx). The formation of the nanowires took place by one dimensional self‐assembly, governed by ππ stacking of the P3HT units.

TEM high contrast images showing P3HT nanowires fabricated by spin‐coating under a solvent vapor pressure.  相似文献   


3.
A facile approach to prepare poly(3‐hexylthiophene) (P3HT)/cadmium selenide quantum dot (CdSe QD) hybrid coaxial nanowires by a stepwise self‐assembly process is reported. P3HT nanowires of ≈20 nm diameter are first prepared by self‐assembly in a poor solvent such as cyclohexanone, and then as‐prepared CdSe QDs are deposited compactly onto the P3HT nanowires by non‐covalent interactions between P3HT and CdSe. When illuminated with white light, the hybrid nanowires show enhanced photoconductivity compared with the pristine P3HT nanowires and the blended nanocomposites.

  相似文献   


4.
Poly(3‐hexylthiophene) (P3HT) supramolecular structures are fabricated on P3HT‐dispersed reduced graphene oxide (RGO) monolayers and surfactant‐free RGO monolayers. P3HT is able to disperse RGO in hot anisole/N,N‐dimethylformamide solvents, and forms nanowires on RGO surfaces through a RGO induced crystallization process. The TEM and AFM investigation of the resultant P3HT/RGO composites shows that P3HT nanowires grow from RGO, and connect individual RGO monolayers. Raman spectroscopy confirms the interaction between P3HT and RGO, which allows the manipulation of the RGO electrical properties. Such a bottom‐up approach provides interesting graphene‐based composites for nanometer‐scale electronics.

  相似文献   


5.
We studied the role that singlet oxygen plays in the solid‐state photochemistry of poly(3‐hexylthiophene) (P3HT). The photosensitized formation of singlet oxygen by solid‐state P3HT and its subsequent reactivity on the polymer were investigated. Using a fluorescent probe, it was found that singlet oxygen (1O2) could be produced by irradiation of P3HT by photosensitization, with no oxidation of the polymer. In addition, 1O2 was directly formed on P3HT via a chemical reaction, again with no oxidation of the polymer. These results give strong evidence that 1O2 is not the principal photo‐oxidative degradation intermediate of P3HT, which conflicts with previous reports.

  相似文献   


6.
Hierarchical poly(3‐hexylthiophene)(P3HT)/carbon nanotube (CNT) supramolecular structures were fabricated through a bottom‐up CNT induced P3HT crystallization strategy. P3HT nanowires growing perpendicular from CNT surface have uniform width and height. The density and the length of these nanowires can be controlled by tuning the P3HT/CNT mass ratio. The quasi‐isothermal crystallization process monitored by in situ UV–Vis spectroscopy indicates that CNTs can greatly enhance the P3HT crystallization, and the P3HT nanowire formation follows first‐order kinetics. Such bottom‐up strategy provides a general approach to build 2D functional conductive supramolecular structures that will lead to numerous applications in nanoscale electronics.

  相似文献   


7.
Novel fullerene‐grafted poly(3‐hexylthiophene) (P3HT)‐based rod‐coil block copolymers have been synthesized. The regioregular P3HT rod block has been synthesized by a modified Grignard metathesis reaction (GRIM). An original in situ end‐capping reaction has been developed in order to convert the P3HT block into an efficient macro‐initiator for the nitroxide‐mediated radical polymerization (NMRP) of the coil block. Controlled radical polymerization of the second poly(butylacrylate‐stat‐chloromethylstyrene) [P(BA‐stat‐CMS)] block has been done through various conditions leading to different coil block lengths. The final electron donor‐acceptor block copolymer has been obtained after C60 grafting in soft conditions. Copolymers have been characterized by 1H NMR and size exclusion chromatography. Optical characterizations, before and after C60 grafting, are reported.

  相似文献   


8.
Poly(3‐hexylthiophene)‐b‐poly(γ‐benzyl‐L ‐glutamate) (P3HT‐b‐PBLG) rod–rod diblock copolymer was synthesized by a ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride using a benzylamine‐terminated regioregular P3HT macroinitiator. The opto‐electronic properties of the diblock copolymer have been investigated. The P3HT precursor and the P3HT‐b‐PBLG have similar UV–Vis spectra both in solution and solid state, indicating that the presence of PBLG block does not decrease the effective conjugation length of the semiconducting polythiophene segment. The copolymer displays solvatochromic behavior in THF/water mixtures. The morphology of the diblock copolymer depends upon the solvent used for film casting and annealing results in morphological changes for both films deposited from chloroform and trichlorobenzene.

  相似文献   


9.
A rod‐coil block copolymer consisting of poly(3‐hexylthiophene) (P3HT) and poly(N‐vinylcarbazole) (PVK) ( P3HT‐ b ‐PVK ) in a single molecular architecture is prepared as the first example for WOLEDs. By obtaining the phase separated domains in thin film of the resulting block copolymer, it is possible to suppress energy transfer from PVK as wide bandgap units to P3HT as low bandgap blocks, yielding dual emissions for white electroluminescence with CIE coordination of (0.34, 0.33).

  相似文献   


10.
The shielding effect of nano TiO2 on collagen under UV radiation was investigated using UV spectrophotometry. The results indicate that the shielding of collagen under UV radiation in the presence of nano TiO2 is significant. For 2.5 wt.‐% of TiO2, there is a greater shielding effect of UV radiation than that for 0.5 wt.‐% of TiO2. In addition, this study gives hints that a novel tanning agent with a UV shielding function can be formulated by using nano TiO2.

UV absorption of collagen under UV radiation after adding 2.5 wt.‐% TiO2.  相似文献   


11.
A nickel α‐diimine catalyst was used for Grignard metathesis (GRIM) polymerization of 2,5‐dibromo 3‐hexylthiophene and 2‐bromo‐5‐iodo‐3‐hexylthiophene monomers. GRIM polymerization of 2‐bromo‐5‐iodo‐3‐hexylthiophene generated regioregular polymers with molecular weights ranging from 3 000 to 12 000 g · mol−1. The nickel α‐diimine catalyst was also successfully used for the GRIM polymerization of a bulky benzodithiophene monomer.

  相似文献   


12.
Crystallization‐induced vertical stratified structures were constructed based on double‐crystalline poly(3‐hexylthiophene) (P3HT)/poly(ethylene glycol)s (PEG) systems at room temperature, in which the P3HT crystallinity and the mechanism were investigated. Vertical stratified microstructures with highly crystalline P3HT network on the surface were formed when depositing from marginal solvents, while lateral phase‐separated structures or low P3HT crystallinity were observed for good solvents. The morphological differences came from the solvent effect. In marginal solvents, p‐xylene and dichloromethane, P3HT large‐scale microcrystallites were generated in solution, which ensured the priority of P3HT crystalline sequence, and phase separation began in the liquid states. When the PEG matrix began to crystallize, great energy from which the second phase separation was induced drove P3HT crystallites to the surface, resulting in the formation of vertical stratified microstructures with highly crystalline P3HT network on the surface. The method, crystallization‐induced phase segregation of crystalline–crystalline blends in marginal solvent, provides a facile way to construct vertically stratified structures, in which P3HT highly crystalline network is favored.

  相似文献   


13.
Well‐defined PEO‐b‐PMMA was prepared, initiated by macroinitiator PEO‐Br, by means of ATRP, where esterification of the terminal hydroxyl group of PEO with 2‐bromoisobutyryl bromide yielded a macroinitiator PEO‐Br. Highly ordered microporous films (hexagonal pattern) were constructed by emulsion micelles of such amphiphilic diblock copolymer formed from a solution with CHCl3/H2O/THF = 100:5:10 (v/v). We also constructed the microporous films using diblock copolymer by the current water‐assisted method.

  相似文献   


14.
The flow of viscoelastic materials is usually interpreted as resulting from intramolecular properties. Typically, the non‐linear flow behaviour and sluggish relaxation dynamics in entangled polymers are interpreted by a disentanglement process. This molecular interpretation has never been validated by direct observation. We report here on in situ observations of polymer melts under steady‐state shear flow using neutron scattering and particle tracking velocimetry. It is shown that the chains remain largely undeformed under steady‐state shear flow whereas wall slippage and shear‐banding are identified in both entangled and unentangled polymer melts. These observations are of prime importance; they reveal that the flow mechanism and its viscoelastic signature reflect a collective effect and not properties of individual chains.

  相似文献   


15.
Summary: A simple compounding technique for the fabrication of polymer nanocomposites with single‐walled carbon nanotubes having exceptional alignment and improved mechanical properties is described. The aligned‐nanotube composite was prepared by dissolving single‐walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. Solvent‐polymer interactions that induce the orientation of soft chain segments during the swelling and moisture curing stage are believed to serve as a driving force for the macroscopic alignment of the carbon nanotubes.

Alignment of single‐walled carbon nanotubes in thermoplastic polyurethane during polar solvent exposure.  相似文献   


16.
Summary: We show in this communication that large‐scale necklace‐like single‐crystalline tetragonal perovskite PbTiO3 nanowires can be obtained via a simple electrospinning method. The morphology and the crystal structure are investigated by SEM, XRD, and HRTEM. The length of the necklace‐like PbTiO3 nanowires is from tens to several tens of micrometers, the wider the diameter of it is between 100 and 200 nm and the thinner the part is between 20 and 50 nm. The necklace‐like PbTiO3 nanowires exhibit high surface photovoltage under the action of external electric field, which is probably applicable in displaying photoelectric devices of heterojunction structure.

SEM image of the electrospinning necklace‐like PbTiO3 nanowires.  相似文献   


17.
Anionic conjugated polymer (PFP‐SO) was assembled with a novel enzymatic substrate 6‐O‐modified PNP‐β‐galactoside ( 1 ) for sensitive multiplex enzyme detections. The PFP‐SO/ 1 /lipase/β‐galactosidase system has two chemical input signals which are Input 1 (lipase) and Input 2 (β‐galactosidase), and output optical signals such as fluorescence emission at 416 nm or 450 nm. Four types of logic gates, including YES, INH, NAND and AND, were successfully constructed and utilized for multiplex detections of lipase and β‐galactosidase in one tube.

  相似文献   


18.
Solar cells comprised of nanoparticulate TiO2 porous film photosensitized with an adsorbing dye have been utilized as photoinduced charge separation systems in aqueous media with the view to forming future artificial photosynthetic systems able to create fuels from solar energy and water. The photoinduced charge separation of the sensitized TiO2 cell in a quasi‐solid, made from agarose or κ‐carrageenan, was investigated.

I–V curves under 98 mW · cm−2 irradiation of ITO/TiO2/Ru(dcbpy)2(NCS)2. Electrolyte: 0.1 M LiI/0.01 M I2 in a quasi‐solid of 0.2 wt.‐% gelatin containing a large excess of water.  相似文献   


19.
The eight‐shaped poly(ethylene oxide) (PEO) is synthesized by a combination of Glaser coupling with ring‐opening polymerization (ROP). Firstly, the star‐shaped (PEO‐OH) 4 is synthesized by ROP of ethylene oxide (EO) using pentaerythritol as an initiator and diphenylmethyl potassium (DPMK) as a deprotonated agent, and then the alkyne group is introduced onto the PEO arm‐end to give (PEO‐Alkyne) 4 in a NaH/tetrahydrofuran (THF) system. The intramolecular cyclization is carried out by a Glaser coupling reaction in a pyridine/CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) system at room temperature in an air atmosphere, and eight‐shaped PEO was formed with high efficiency (almost 100%). The target polymers and intermediates were well characterized by SEC, MALDI‐TOF MS, 1H NMR and FT‐IR in detail.

  相似文献   


20.
A series of three poly(3‐hexylthiophene) functionalized either with a cyanoacetic acid (CA) or a rhodanine‐3‐acetic acid anchoring groups were synthesized and characterized. The TiO2 based dye‐sensitized solar cells have been fabricated and performances were tested. We show that shorter chain length (15 thiophene units) linked to CA binding group gives good performances as Jsc, Voc, FF and η(%) were 6.93(mA · cm−2), 0.65(V), 0.67 and 3.02%, respectively. A maximum IPCE of ≈50% at 500 nm was recorded with a liquid electrolyte, under AM 1.5 simulated solar irradiance.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号