首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well‐defined diblock condensation copolymers composed of an aromatic polyamide and an aromatic polyether have been synthesized by means of successive chain‐growth condensation polymerizations. Polymerization of a polyamide monomer with an orthogonally difunctional initiator is accompanied with side reactions. On the other hand, polymerization with a monofunctional initiator afforded well‐defined polyamide, which has been converted into a macroinitiator by introduction of a terminal 4‐fluorobenzophenone unit. Well‐defined diblock copolymers are obtained by polymerization of a polyether monomer in the presence of this macroinitiator.

  相似文献   


2.
Well‐defined diblock copolymers composed of poly(N‐octylbenzamide) and polystyrene were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization of styrene with a polyamide chain transfer agent (CTA) prepared via chain‐growth condensation polymerization. Synthesis of a dithioester‐type macro‐CTA possessing the polyamide segment as an activating group was unsatisfactory due to side reactions and incomplete introduction of the benzyl dithiocarbonyl unit. On the other hand, a dithiobenzoate‐CTA containing poly(N‐octylbenzamide) as a radical leaving group was easily synthesized, and the RAFT polymerization of styrene with this CTA afforded poly(N‐octylbenzamide)‐block‐polystyrene with controlled molecular weight and narrow polydispersity.

  相似文献   


3.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


4.
Well‐defined polymethylene‐block‐polystyrene (PM‐b‐PS) diblock copolymers were synthesized via a combination of living polymerization of ylides and atom transfer radical polymerization (ATRP) of styrene. A series of hydroxyl‐terminated polymethylenes (PM‐OHs) with different molecular weight and narrow molecular weight distribution were prepared using living polymerization of ylides following efficient oxidation in a quantitive functionality. Then, the macroinitiators (PM‐MIs ( = 1 900–15 000; PDI = 1.12–1.23)) transformed from PM‐OHs in ≈ 100% conversion initiated ATRPs of styrene to construct PM‐b‐PS copolymers. The GPC traces indicated the successful extension of PS segment ( of PM‐b‐PS = 5 000–41 800; PDI = 1.08–1.23). Such copolymers were characterized by 1H NMR and DSC.

  相似文献   


5.
Summary: Controlled polymerization of N‐isopropylacrylamide (NIPAAM) was achieved by atom transfer radical polymerization (ATRP) using ethyl 2‐chloropropionate (ECP) as initiator and CuCl/tris(2‐dimethylaminoethyl)amine (Me6TREN) as a catalytic system. The polymerization was carried out in DMF:water 50:50 (v/v) mixed solvent at 20 °C. The first order kinetic plot was linear up to 92% conversion. Controlled molecular weights up to 2.2 × 104 and low polydispersities (1.19) were obtained. The living character of the polymerization was also demonstrated by self‐blocking experiments. Block copolymers with N,N‐dimethylacrylamide (DMAAM) and 3‐sulfopropyl methacrylate (SPMA) were successfully prepared.

Molecular weights and polydispersities of polyNIPAAM versus NIPAAM conversion for two different degrees of polymerization.  相似文献   


6.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


7.
Summary: For the convenient synthesis of well‐defined poly(N‐octyl‐p‐benzamide)s with low polydispersities, the polycondensation of methyl 4‐octylaminobenzoate ( 1 ) was investigated. Methyl ester monomer 1 polymerized with lithium 1,1,1,3,3,3‐hexamethyldisilazide (LHMDS) in the presence of an initiator in tetrahydrofuran at −10 °C. The highly pure polyamide with a defined molecular weight and a low polydispersity is obtained after simple treatment of the reaction mixture with aqueous NaOH solution, followed by evaporation.

The chain‐growth polycondensation of 4‐octylaminobenzoic acid methyl ester ( 1 ) with lithium 1,1,1,3,3,3‐hexamethyldisilazide (LHMDS) to yield poly(N‐octyl‐p‐benzamide).  相似文献   


8.
Summary: A series of helix‐coil diblock copolymers based on poly(ethylene oxide) and optically active helical poly{(+)‐2,5‐bis[4′‐((S)‐2‐methylbutoxy)phenyl]styrene} (PMBPS) were synthesized via atom transfer radical polymerization (ATRP). The synthetic methodology permitted straightforward preparation of the diblock copolymers with relatively low polydispersities and a broad range of compositions and molecular weights. Depending on the composing block length and the initial concentration, the copolymers self‐assembled into different supramolecular structures in aqueous solution, including spherical micelles, vesicles, multilamellar vesicles, large compound vesicles, and tubules.

Schematic representation of the synthesis of PEO‐b‐PMBPS block copolymers and their aggregation in aqueous solution.  相似文献   


9.
A new synthetic approach for the preparation of block copolymers by mechanistic transformation from atom transfer radical polymerization (ATRP) to visible light‐induced free radical promoted cationic polymerization is described. A series of halide end‐functionalized polystyrenes with different molecular weights synthesized by ATRP were utilized as macro‐coinitiators in dimanganese decacarbonyl [Mn2(CO)10] mediated free radical promoted cationic photopolymerization of cyclohexene oxide or isobutyl vinyl ether. Precursor polymers and corresponding block copolymers were characterized by spectral, chromatographic, and thermal analyses.  相似文献   

10.
A bifunctional alkyl halide, namely l, 2-bis(2′-bromobutyryl) ethane (BBrBE), was synthesized and used to initiate the bulk atom transfer radical polymerization (ATRP) of styrene (St) at 110°C in the presence of CuBr/2,2′-bipyridyl. The narrow polydispersity of polystyrene (PSt) with precisely two arms could be synthesized. The initiate ability of the two active bromide functional groups at both sides of BBrBE for St and the propagation ability of the two arms were confirmed to be similar by the characterization of the individual arms obtained upon hydrolysis of the ester link between the core and the branches.  相似文献   

11.
12.
13.
Summary: Block copolymers of poly(ethylene oxide‐block‐2‐hydroxypropyl methacrylate) (PEO‐b‐PHPMA) with a range of molecular masses of the PHPMA block were obtained by controlled radical polymerization on a chip (CRP chip) using a PEO macroinitiator. A series of well‐controlled polymerizations were carried out at different pumping rates or reaction times with a constant ratio of monomer to initiator. The stoichiometry of the reactants was also adjusted by varying relative flow rates to change the reactant concentrations.

A schematic of a CRP chip and SEC traces of the PEO‐b‐PHPMA produced from different pump rates with a 1:100 ratio of initiator to monomer. The dashed peaks are the macroinitiator, PEO‐Br (left), and monomer, HPMA (right).  相似文献   


14.
Summary: The living polymerization of N,N‐dimethylacrylamide was achieved by atom transfer radical polymerization catalyzed by copper chloride complexed with a new ligand, N,N′‐bis(pyridin‐2‐ylmethyl 3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED). With methyl 2‐chloropropionate as the initiator, the polymerization reached high conversions (> 90%) at 80 °C and 100 °C, producing polymers with very close to theoretical values and low polydispersity. The ligand, temperature, and copper halide strongly affected the activity and control of the polymerization.

PDMA molecular weight and polydispersity dependence on the DMA conversion in the DMA bulk polymerizations at different temperatures: DMA/CuCl/MCP/BPED = 100/1/1/1, 100 °C (♦, ⋄); 80 °C (▴, ▵); 60 °C (▪, □); and DMA/CuCl/MCP/BPED = 100/1/1/2, 80 °C (•, ○).  相似文献   


15.
Star copolymers are known to phase separate on the nanoscale, providing useful self‐assembled morphologies. In this study, the authors investigate synthesis and assembly behavior of miktoarm star (μ‐star) copolymers. The authors employ a new strategy for the synthesis of unprecedented μ‐star copolymers presenting poly(N‐octyl benzamide) (PBA) and poly(ε‐caprolactone) (PCL) arms: a combination of chain‐growth condensation polymerization, styrenics‐assisted atom transfer radical coupling, and ring‐opening polymerization. Gel permeation chromatography, mass‐analyzed laser desorption/ionization mass spectrometry, and 1H NMR spectroscopy reveal the successful synthesis of a well‐defined (PBA11)2‐(PCL15)4 μ‐star copolymer (M n,NMR ≈ 12 620; Đ = 1.22). Preliminary examination of the PBA2PCL4 μ‐star copolymer reveals assembled nanofibers having a uniform diameter of ≈20 nm.

  相似文献   


16.
Summary: A novel two‐step polymerization strategy allowing the integration of sequence‐defined oligopeptides into synthetic polymers has been demonstrated by the successful synthesis of an oligopeptide‐block‐poly(n‐butyl acrylate) copolymer. The approach utilizes a solid‐phase supported synthesis of an oligopeptide macroinitiator (SPPS) followed by solution‐phase atom transfer radical polymerization (ATRP) initiated by the oligopeptide macroinitiator. The resulting block copolymer exhibited a low (1.19) and a controllable .

Poly(n‐butyl acrylate)‐block‐oligopeptide.  相似文献   


17.
18.
引发剂结构对原子转移自由基聚合反应的影响   总被引:4,自引:0,他引:4  
研究了三种不同结构的引发剂,溴代乙酸乙酯(EBrA)、α-溴代丁乙酯(EBrB)、α-溴代异丁酸乙酸(EBriB)引发的苯乙烯的原子转移自由基聚合反应(ATRP)。发现EBrA引发的苯乙烯的ATRP不是“活性”聚合。EBriB引发的苯乙烯的ATRP引发效率不够高,也不是典型的“活性”聚合。EBrB引发的苯乙烯的ATRP是较为典型的“活性”聚合:聚合物的分子量可以通过调节单体/引发剂的投料量及反应时间来控制,所得聚合物的分子量分布很窄,且有随转化率的增加而逐渐变窄的趋势。  相似文献   

19.
Novel wormlike nanostructures were self‐assembled in bulk films of a well defined diblock copolymer with azobenzene moieties, which was prepared by atom transfer radical polymerization (ATRP). For comparison, a homopolymer with almost the same repeat units of azobenzene as those in the copolymer was also prepared. They both had well defined structures and exhibited a smectic liquid crystalline phase. Upon annealing the copolymer films, poly(methyl methacrylate) formed a matrix with excellent optical properties, and the azobenzene segment in the minority phase self‐assembled into a wormlike mesogenic domain in the bulk films. Such block copolymer films exhibited stability and transparency by eliminating the scattering of visible light, indicating their potential application as photoresponsive functional materials. Although wormlike morphologies have been obtained in micelles from block copolymer solutions, to the best of our knowledge, such wormlike nanostructures have never been explored in bulk films.

  相似文献   


20.
原子转移自由基悬浮聚合制备PVC-g-PMMA共聚物;聚氯乙稀;甲基丙烯酸甲酯;原子转移自由基悬浮聚合  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号