首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Novel temperature‐responsive poly(N‐isopropylacrylamide) (PNIPAAm) nanoparticle‐containing PNIPAAm hydrogels were prepared by radical polymerization. In comparison with conventional PNIPAAm hydrogels, the PNIPAAm gels thus prepared exhibit much faster response rates as the temperature is raised above the lower critical solution temperature. The improved properties are a result of the incorporation of PNIPAAm particles, which first shrink and then generate pores for water molecules to be quickly squeezed out of the bulky PNIPAAm gels.

Schematic illustration of the shrinking process: (I) First PNIPAAm particles shrink and generate pores; (II) the bulky gels then shrink further at a rapid rate.  相似文献   


2.
In this study, the hydrophobic liquid template method was firstly used to prepare temperature sensitive, porous poly(N‐isopropylacrylamide) (PNIPAAm) hydrogel. During the radical polymerization, hydrophobic polydimethylsiloxane (PDMS) and surfactant sodium dodecyl sulfate (SDS) were used as liquid templates and stabilizer, respectively. After removal of the liquid templates, porous PNIPAAm hydrogel was obtained. This gel exhibited superfast shrinking properties when being transferred from below to above the lower critical solution temperature (LCST), which was ascribed to the interconnected porous structures.

  相似文献   


3.
Macroporous temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPA) hydrogels were prepared by a novel phase‐separation technique to improve the response properties. In comparison with a conventional PNIPA hydrogel prepared in water, these macroporous hydrogels, prepared by polymerization in aqueous sucrose solutions, have higher swelling ratios at temperatures below the lower critical solution temperature and exhibit much faster response rates to temperature changes.

Scanning electron microscopy image of the surface of a PNIPA hydrogel, prepared in 1.50 M aqueous sucrose solution.  相似文献   


4.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.

  相似文献   


5.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

6.
Poly[N‐isopropylacrylamide‐g‐poly(ethylene glycol)]s with a reactive group at the poly(ethylene glycol) (PEG) end were synthesized by the radical copolymerization of N‐isopropylacrylamide with a PEG macromonomer having an acetal group at one end and a methacryloyl group at the other chain end. The temperature dependence of the aqueous solutions of the obtained graft copolymers was estimated by light scattering measurements. The intensity of the light scattering from aqueous polymer solutions increased with increasing temperature. In particular, at temperatures above 40°C, the intensity abruptly increased, indicating a phase separation of the graft copolymer due to the lower critical solution temperature (LCST) of the poly(N‐isopropylacrylamide) segment. No turbidity was observed even above the LCST, and this suggested a nanoscale self‐assembling structure of the graft copolymer. The dynamic light scattering measurements confirmed that the size of the aggregate was in the range of several tens of nanometers. The acetal group at the end of the PEG graft chain was easily converted to the aldehyde group by an acid treatment, which was analyzed by 1H NMR. Such a temperature‐induced nanosphere possessing reactive PEG tethered chains on the surface is promising for new nanobased biomedical materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1457–1469, 2006  相似文献   

7.
Here it is demonstrated that mesoporous silicas (MPSs) can be used as effective “topological crosslinkers” for poly(N‐isopropylacrylamide) (PNIPA) hydrogels to improve the mechanical property. Three‐dimensional bicontinuous mesporous silica is found to effectively reinforce the PNIPA hydrogels, as compared to nonporous silica and two‐dimensional hexagonally ordered mesoporous silica.  相似文献   

8.
A novel semi‐interpenetrating polymer network based on alginate and poly(N‐isopropylacrylamide) (PNiPAAm) has been synthesized that shows response to temperature and magnetic fields. Highly homogeneous porous hydrogels are obtained by copolymerizing N‐isopropylacrylamide and bis‐acrylamide in the presence of an aqueous alginate solution. The synthesis of magnetic iron oxides by in‐situ oxidation of iron cations coordinated to the alginate network results in a hydrogel with an enhanced deswelling rate with respect to pure PNiPAAm.

  相似文献   


9.
Surfactant‐grafted hydrogels with a fast response to temperature were prepared. In order to clarify the mechanism of rapid shrinking, the effects of the grafted surfactant and the homogeneity of the main chain were investigated. Poly(NIPAAm‐co‐S180A) gels prepared using a chemical cross‐linker (bis‐PNS gels) exhibited rapid shrinking, as did PNS gels prepared by γ‐ray irradiation (γ‐PNS gels). This suggested that the rapid shrinking of the PNS gel did not depend on the homogeneity of the main‐chain structure. The shrinking kinetics of the bis‐PNS gels depended on the amount of the introduced surfactant, which means that shrinking is enhanced by micelle formation as a dynamic driving force. From the analysis by dynamic light scattering (DLS) and scanning microscopic light scattering (SMILS), it was suggested that the micelle structure, which induced rapid shrinking, existed in the bis‐PNS gel.

  相似文献   


10.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

11.
12.
Synthesis and characterization of a pH‐ and redox‐sensitive hydrogel of poly(aspartic acid) are reported. Reversible gelation and dissolution are achieved both in dimethylformamide and in aqueous medium via a thiol‐disulphide interconversion in the side chain of the polymers. Structural changes are confirmed by Raman microscopy and rheological measurements. Injectable aqueous solutions of thiolated poly(aspartic acid) can be converted into mechanically stable gels by oxidation, which can be useful for drug encapsulation and targeted delivery. Reduction‐facilitated release of an entrapped drug from disulphide cross‐linked hydrogels is studied.

  相似文献   


13.
Radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures, in the presence of fluorinated‐alcohols, produced heterotactic polymer comprising an alternating sequence of meso and racemo dyads. The heterotacticity reached 70% in triads when polymerization was carried out at ?40 °C using nonafluoro‐tert‐butanol as the added alcohol. NMR analysis revealed that formation of a 1:1 complex of NIPAAm and fluorinated‐alcohol through C?O···H? O hydrogen bonding induces the heterotactic specificity. A mechanism for the heterotactic‐specific polymerization is proposed. Examination of the phase transition behavior of aqueous solutions of heterotactic poly(NIPAAm) revealed that the hysteresis of the phase transition between the heating and cooling cycles depended on the average length of meso dyads in poly(NIPAAm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2539–2550, 2009  相似文献   

14.
Poly(N‐isopropylacrylamide) (PNIPAAm) grafted dextran nanogels with dodecyl and thiol end groups have been synthesized by RAFT process. Dodecyl‐terminated polymers (DexPNI) can be readily dissolved in water and further self assemble into ordered stable nanostructures through direct noncovalent interactions at room temperature. SEM, AFM and DLS measurements confirm the formation of spherical nanogels at hundred‐nanometer scales. The elevation of environment temperature will indirectly result in the formation of collapsed nanostructures due to the LCST phase transition of PNIPAAm side chains. Turbidimetry results show that the phase transition behaviors of DexPNI are greatly dependent on PNIPAAm chain length and polymer concentration: increasing PNIPAAm chain length and polymer concentration both lead to lower LCSTs and sharper phase transitions. Moreover, the dodecyl‐terminated polymers can transform into thiol‐terminated versions by aminolysis of trithiocarbonate groups, and further into chemical (disulfide) cross‐linked versions (SS‐DexPNI) by oxidation. SS‐DexPNI nanogels have “doubled” chain length of PNIPAAm, and hence sharper phase transitions. In situ DLS measurements of the evolution of hydrodynamic radius attest that the self assembly of SS‐DexPNI nanogels can be selectively directed by the change in either external temperature or redox potential. These nanogels thus are promising candidates for triggered intracellular delivery of encapsulated cargo. We can also expect that the polymer can be noncovalently (by dodecyl end groups) or covalently (by thiol end groups) coated on a series of nanomaterials (e.g., carbon nanotubes, graphene, gold nanomaterials) to build a variety of novel smart, and robust nanomaterials.

  相似文献   


15.
In this work, multifunctional hydrogels with vivid color change and shrinking–swelling response to temperature, ion strength, and alternating magnetic field are fabricated via magnetic assembly. The hydrogels show gradual shift colors from yellowish green to green, cyan, blue, purple, and even reddish violet in response to temperature or ion strength. In the response process, the whole color modulation process is fully reversible and transferable along with a relative short response time. Especially, the magnetism and porous structure of the hybrid hydrogel enable it to be a potential carrier for hydrophobic molecules. Taking advantage of the magnetocaloric responsiveness, the dyed oil loaded hydrogel exhibits a controllable release behavior in each reversible shrinking–swelling cycle under an alternating magnetic field. This multi‐responsive hydrogel can hold promise for practical engineering applications, including sensors, displays, and controlled release.

  相似文献   


16.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

17.
Stimuli‐responsive poly(N‐isopropylacrylamide) nanogel with covalently labeled rhodamine B urea derivatives (P(NIPAM‐co‐RhBUA)) is utilized as a sensitive fluorescent probe for Cr3+ in aqueous solution, and its thermo‐induced tunable detection capacity is investigated. At 20 °C, non‐fluorescent nanogel can selectively bind with Cr3+ over some other metal ions, leading to prominent fluorescence OFF–ON switching due to the recognition of RhBUA with Cr3+. Upon heating above the phase transition temperature, enhanced fluorescence intensity is observed (≈61‐fold increase at 45 °C) for the nanogel in the presence of Cr3+, accompanied with an improved detection sensitivity, which suggest that hydrophobic microenvironment generated in the collapsed nanogel plays an active role for their detection performance.

  相似文献   


18.
Summary: Specific temperature‐responsive biodegradable hydrogels were synthesized and characterized in terms of their regulation of enzymatic accessibility based on the physical properties of the temperature‐responsive polymers. The hydrogels consist of glycidyl methacrylate‐modified dextran grafted with the poly(N‐isopropylacrylamide) (PNIPAAm) homopolymer, and cross‐linked by co‐polymerization with NIPAAm and N,N‐dimethylacrylamide (DMAAm). The coil‐globule change in the grafted poly(NIPAAm) chains and only a slight dehydration of the poly(NIPAAm‐co‐DMAAm) cross‐linkers are effective in controlling the enzymatic degradation over a specific temperature range.

The thermo‐responses of the graft chains (steric hindrance) and the crosslinkers (slight deswelling of the hydrogel networks) control the enzymatic degradation of the hydrogel.  相似文献   


19.
Summary: Here we show a new design concept of functional polymer gel for rapid deswelling by utilizing micelle‐forming ability of surfactant. A thermosensitive polymer bearing a surfactant was synthesized by using N‐isopropylacrylamide and a reactive surfactant. Above lower critical solution temperature, the grafted surfactant acts to form micelle structure. In the shrinking process, the inside water is rapidly squeezed out through hydrophilic channel between the formed micelles and consequently the gel shrinks quickly.

Shrinking mechanism of PNS gel in response to temperature increase.  相似文献   


20.
DNA‐tethered poly‐N‐isopropylacrylamide copolymer chains, pNIPAM, that include nucleic acid tethers have been synthesized. They are capable of inducing pH‐stimulated crosslinking of the chains by i‐motif structures or to be bridged by Ag+ ions to form duplexes. The solutions of pNIPAM chains undergo crosslinking at pH 5.2 or in the presence of Ag+ ions to form hydrogels. The hydrogels reveal switchable hydrogel‐to‐solution transitions by the reversible crosslinking of the chains at pH 5.2 and the separation of the crosslinking units at pH 7.5, or by the Ag+ ion‐stimulated crosslinking of the chains and the reverse dissolution of the hydrogel by the cysteamine‐induced elimination of the Ag+ ions. The DNA‐crosslinked hydrogels are thermosensitive and undergo reversible temperature‐controlled hydrogel‐to‐solid transitions. The solid pNIPAM matrices are protected against the OH? or cysteamine‐stimulated dissociation to the respective polymer solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号