首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Two experiments were conducted to assess the effect of the rate of sinusoidal amplitude modulation (SAM) of a masker tone on detection of SAM of a probe tone (experiment 1) or on SAM-rate discrimination for the probe tone (experiment 2). When modulated at the same rate as the probe, the masker interfered with both the detection of probe modulation and the discrimination of the rate of probe modulation. The interference was obtained when the masker was either higher or lower in frequency than the probe (the probe and masker were separated by 2 oct). The amount of interference in detecting probe modulation (experiment 1) decreased as the common base rate of modulation was increased from 5 to 200 Hz. For rate discrimination (experiment 2), the amount of interference remained approximately the same for base rates of 2-40 Hz, the range over which rate discrimination was measured. In both experiments, the amount of interference was reduced when the masker was modulated at a different rate than the probe.  相似文献   

2.
Wojtczak and Viemeister [J. Acoust. Soc. Am. 106, 1917-1924 (1999)] demonstrated a close relationship between intensity difference limens (DLs) and 4-Hz amplitude modulation (AM) detection thresholds in normal-hearing acoustic listeners. The present study demonstrates a similar relationship between intensity DLs and AM detection thresholds in cochlear-implant listeners, for gated stimuli. This suggests that acoustic and cochlear-implant listeners make use of a similar decision variable to perform intensity discrimination and modulation detection tasks. It can be shown that the absence of compression in electric hearing does not preclude this possibility.  相似文献   

3.
Amplitude modulations of pulsitile stimulation can be used to convey pitch information to cochlear implant users. One variable in designing cochlear implant speech processors is the choice of modulation waveform used to convey pitch information. Modulation frequency discrimination thresholds were measured for 100 Hz modulations with four waveforms (sine, sawtooth, a sharpened sawtooth, and square). Just-noticeable differences (JNDs) were similar for all but the square waveform, which often produced larger JNDs. The results suggest that a sine, sawtooth, and sharpened sawtooth waveforms are likely to provide similar pitch discrimination within a speech processing strategy.  相似文献   

4.
5.
It has been proposed that the detection of frequency modulation (FM) of sinusoidal carriers can be mediated by two mechanisms; a place mechanism based on FM-induced amplitude modulation (AM) in the excitation pattern, and a temporal mechanism based on phase locking in the auditory nerve. The temporal mechanism appears to be "sluggish" and does not play a role for FM rates above about 10 Hz. It also does not play a role for high carrier frequencies (above about 5 kHz). This experiment provided a further test of the hypothesis that the effectiveness of the temporal mechanism depends upon the time spent close to frequency extremes during the modulation cycle. Psychometric functions for the detection of AM and FM were measured for two carrier frequencies, 1 and 6 kHz. The modulation waveform was quasitrapezoidal. Within each modulation period, P, a time Tss was spent at each extreme of frequency or amplitude. The transitions between the extremes, with duration Ttrans had the form of a half-cycle of a cosine function. The modulation rate was 2, 5, 10, or 20 Hz, giving values of P of 500, 200, 100, and 50 ms. TSS varied from 0 ms (sinusoidal modulation) up to 160, 80, 40, or 20 ms, for rates of 2, 5, 10, and 20 Hz, respectively. The detectability of AM was not greatly affected by modulation rate or by the value of TSS, except for a slight improvement with increasing TSS for the lowest modulation rates; this was true for both carrier frequencies. For FM of the 6-kHz carrier, the pattern of results was similar to that found for AM, which is consistent with an excitation-pattern model of FM detection. For FM of the 1-kHz carrier, performance improved markedly with increasing TSS, especially for the lower FM rates; there was no change in performance with TSS for the 20-Hz modulation rate. The results are consistent with the idea that detection of FM of a 1-kHz carrier is partly mediated by a sluggish temporal mechanism. That mechanism benefits from greater time spent at frequency extremes of the modulation cycle for rates up to 10 Hz.  相似文献   

6.
孟庆林  原猛  牟宏宇  陈友元  冯海泓 《物理学报》2012,61(16):164302-164302
通过心理物理实验探讨了包络调制率(<300 Hz)和纯音载波频率(<8 kHz)对听觉时间调制检测能力的影响. 测试信号为以纯音为载波的正弦幅度调制信号, 采用二选一强迫选择法和自适应调整步长的心理物理实验方法, 测试得到不同载波频率条件下的时间调制传递函数. 实验结果表明, 包络调制率和载波频率均会对听觉的时间调制检测能力产生影响. 当载波频率低于2 kHz时, 人耳的检测能力与调制率呈单调递增趋势;当载波频率高于3.5 kHz时, 检测能力也会受到调制率的显著影响, 但没有显著的单调变化趋势. 当调制率在10-100 Hz之间时, 检测能力不随载波频率明显变化;当调制率在150-300 Hz之间时, 调制检测能力随着载波频率上升而下降, 在载波频率达到3.5 kHz时, 调制检测能力不随载波频率显著改变.  相似文献   

7.
The effect on modulation detection interference (MDI) of timing of gating of the modulation of target and interferer, with synchronously gated carriers, was investigated in three experiments. In a two-interval, two-alternative forced choice adaptive procedure, listeners had to detect 15 Hz sinusoidal amplitude modulation (AM) or frequency modulation (FM) imposed for 200 ms in the temporal center of a 600 ms target sinusoidal carrier. In the first experiment, 15 Hz sinusoidal FM was imposed in phase on both target and interferer carriers. Thresholds were lower for nonoverlapping than for synchronous modulation of target and interferer, but MDI still occurred for the former. Thresholds were significantly higher when the modulators were gated synchronously than when the interferer modulator was gated on before and off after that of the target. This contrasts with the findings of Oxenham and Dau [J. Acoust. Soc. Am. 110, 402-408 (2001)], who reported no effect of modulation asynchrony on AM detection thresholds, using a narrowband noise modulator. Using FM, experiment 2 showed that for temporally overlapping modulation of target and interferer, modulator asynchrony had no significant effect when the interferer was modulated by a narrowband noise. Experiment 3 showed that, for AM, synchronous gating of modulation of the target and interferer produced lower thresholds than asynchronous gating, especially for sinusoidal modulation of the interferer. Results are discussed in terms of specific cues available for periodic modulation, and differences between perceptual grouping on the basis of common AM and FM.  相似文献   

8.
This article is concerned with the detection of mixed modulation (MM), i.e., simultaneously occurring amplitude modulation (AM) and frequency modulation (FM). In experiment 1, an adaptive two-alternative forced-choice task was used to determine thresholds for detecting AM alone. Then, thresholds for detecting FM were determined for stimuli which had a fixed amount of AM in the signal interval only. The amount of AM was always less than the threshold for detecting AM alone. The FM thresholds depended significantly on the magnitude of the coexisting AM. For low modulation rates (4, 16, and 64 Hz), the FM thresholds did not depend significantly on the relative phase of modulation for the FM and AM. For a high modulation rate (256 Hz) strong effects of modulator phase were observed. These phase effects are as predicted by the model proposed by Hartmann and Hnath [Acustica 50, 297-312 (1982)], which assumes that detection of modulation at modulation frequencies higher than the critical modulation frequency is based on detection of the lower sideband in the modulated signal's spectrum. In the second experiment, psychometric functions were measured for the detection of AM alone and FM alone, using modulation rates of 4 and 16 Hz. Results showed that, for each type of modulation, d' is approximately a linear function of the square of the modulation index. Application of this finding to the results of experiment 1 suggested that, at low modulation rates, FM and AM are not detected by completely independent mechanisms. In the third experiment, psychometric functions were again measured for the detection of AM alone and FM alone, using a 10-Hz modulation rate. Detectability was then measured for combined AM and FM, with modulation depths selected so that each type of modulation would be equally detectable if presented alone. Significant effects of relative modulator phase were found when detectability was relatively high. These effects were not correctly predicted by either a single-band excitation-pattern model or a multiple-band excitation-pattern model. However, the detectability of the combined AM and FM was better than would be predicted if the two types of modulation were coded completely independently.  相似文献   

9.
数值研究了激光脉宽对H_2~+和T_2~+谐波辐射的影响.计算结果表明:(i)对于谐波频移现象:在少周期激光场下,H_2~+和T_2~+谐波辐射呈现红移.随着激光脉宽增大,H_2~+谐波辐射呈现蓝移; T_2~+谐波辐射红移减弱.(ii)对于谐波振幅强度:H_2~+和T_2~+谐波辐射强度会随着激光脉宽增大而增强.但是,在少周期激光场下,H_2~+谐波截至能量附近的强度要大于T_2~+.在多周期激光场下,T_2~+谐波截至能量附近的强度要大于H_2~+.  相似文献   

10.
Three experiments were designed to examine temporal envelope processing by cochlear implant (CI) listeners. In experiment 1, the hypothesis that listeners' modulation sensitivity would in part determine their ability to discriminate between temporal modulation rates was examined. Temporal modulation transfer functions (TMTFs) obtained in an amplitude modulation detection (AMD) task were compared to threshold functions obtained in an amplitude modulation rate discrimination (AMRD) task. Statistically significant nonlinear correlations were observed between the two measures. In experiment 2, results of loudness-balancing showed small increases in the loudness of modulated over unmodulated stimuli beyond a modulation depth of 16%. Results of experiment 3 indicated small but statistically significant effects of level-roving on the overall gain of the TMTF, but no impact of level-roving on the average shape of the TMTF across subjects. This suggested that level-roving simply increased the task difficulty for most listeners, but did not indicate increased use of intensity cues under more challenging conditions. Data obtained with one subject, however, suggested that the most sensitive listeners may derive some benefit from intensity cues in these tasks. Overall, results indicated that intensity cues did not play an important role in temporal envelope processing by the average CI listener.  相似文献   

11.
A previous study by [J. Lee, G. Long, and C. Jeung, J. Acoust. Soc. Am. 119, S3332 (2006)] found that information at the onset or offset of modulation could be utilized for improved amplitude modulation (AM) depth discrimination in a continuous carrier condition (carrier presented 250 ms earlier and later than the modulator). In this study, the relative contribution of information at the onset or offset of the modulation was examined with an onset-fringe carrier condition (carrier begins 250 ms earlier than the modulator) and an offset-fringe condition (carrier ends 250 ms later than the modulator). The results suggest that modulation information at the onset might be utilized more than at the offset.  相似文献   

12.
频率调制强吸收光谱中残余幅度调制的理论分析   总被引:1,自引:0,他引:1  
由电光调制器(EOM)中双折射效应及线偏光不完全沿EOM调制方向诱发的残余幅度调制(RAM)使频率调制(FM)光谱技术在微量气体检测中的应用受到极大的限制。基于光场与晶体相互作用及光学干涉原理推导出存在RAM时FM光谱的线型表达式,确定出输入线偏光角度、EOM中双折射效应、FM系数等是影响线型的主要因素,且当入射EOM光的偏振角度偏离调制方向越大,双折射效应引起的特征偏振方向相位差越大,线型扭曲越严重;同时在FM色散光谱中存在一个受两者影响的直流偏置;最后给出通过伺服控制这两过程可以达到抑制RAM的目的。这些现象及线型的分析将为基于光纤器件的FM光谱提供必要的理论支持。  相似文献   

13.
Detection and discrimination of frequency modulation were studied for harmonic signals with triangular spectral envelopes. The center frequency of the stimuli was near 2 kHz; the fundamental frequency was near 100 Hz. To prevent the possibility that the discrimination was based on differences of initial or final frequencies, these frequencies were equal within and across modulations in each individual experiment. Differences between modulations consisted of differences in the trajectories between the initial and final frequencies. Performance worsened as the slopes of the spectral envelopes decreased. Addition of noise also impaired modulation discrimination. The dependence on the signal-to-noise ratio was similar to what is found for stationary stimuli: Discrimination of frequency modulation deteriorated more rapidly with decreasing signal-to-noise ratio when stimuli had shallow spectral slopes than when they had steep spectral slopes. In spite of the precautions taken (i.e., initial and final frequency the same), the discrimination of these stimuli was more likely based on quasistationary frequency discrimination than on discrimination of modulation rate. This conclusion is consistent with previous findings for pure tones presented in quiet that frequency discrimination is more acute than modulation-rate discrimination.  相似文献   

14.
Frequency modulation detection limens (FMDLs) were measured for carrier frequencies (f(c)) of 1000, 4000, and 6000 Hz, using modulation frequencies (f(m)) of 2 and 10 Hz and levels of 20 and 60 dB sensation level (SL), both with and without random amplitude modulation (AM), applied in all intervals of a forced-choice trial. The AM was intended to disrupt excitation-pattern cues. At 60 dB SL, the deleterious effect of the AM was smaller for f(m) = 2 than for f(m) = 10 Hz for f(c) = 1000 and 4000 Hz, respectively, while for f(c) = 6000 Hz the deleterious effect was large and similar for the two values of f(m). This is consistent with the idea that, for f(c) below about 5000 Hz and f(m) = 2 Hz, frequency modulation can be detected via changes in phase locking over time. However, at 20 dB SL, the deleterious effect of the added AM for f(c) = 1000 and 4000 Hz was similar for the two values of f(m), while for f(c) = 6000 Hz, the deleterious effect of the AM was greater for f(m) = 10 than for f(m) = 2 Hz. It is suggested that, at low SLs, the auditory filters become relatively sharp and phase locking weakens, so that excitation-pattern cues influence FMDLs even for low f(c) and low f(m).  相似文献   

15.
This article discusses the detection of mixed modulation, i.e., simultaneous amplitude and frequency modulation (MM). The investigations have incorporated both a sine wave modulating signal and an irregular modulating signal, a very narrow noise band, of a specified center frequency. The results revealed that for a sinusoidal low-frequency modulating signal, amplitude and frequency changes that were separately subthreshold could be detected by listeners in mixed modulation. This indicates summation of sensations caused by simultaneous AM and FM modulation. This effect was not observed in the case of the irregular modulating signal. A hypothesis is advanced that the perception of modulated signals is governed by two mechanisms, viz., temporal and spectral. The operation of the two mechanisms depends mainly on the modulating frequency. The type of modulation does not play any significant role in this case.  相似文献   

16.
Stimulated Brillouin scattering (SBS) is a key problem with the increasing power of fiber transmission systems. In this letter, a frequency-modulated fiber laser with an ultra-narrow linewidth is chosen as a light source. The SBS threshold is increased from 4.1 to 6.2 mW at 13-MHz frequency modulation amplitude for a 50-km G652 fiber. We also show that the SBS threshold increases with not only the frequency modulation amplitude, but also the modulation frequency. The modulation frequency should be high enough for effective modulation.  相似文献   

17.
Temporal discrimination was measured using a gap discrimination paradigm for three groups of listeners with normal hearing: (1) ages 18-30, (2) ages 40-52, and (3) ages 62-74 years. Normal hearing was defined as pure-tone thresholds < or = 25 dB HL from 250 to 6000 Hz and < or = 30 dB HL at 8000 Hz. Silent gaps were placed between 1/4-octave bands of noise centered at one of six frequencies. The noise band markers were paired so that the center frequency of the leading marker was fixed at 2000 Hz, and the center frequency of the trailing marker varied randomly across experimental runs. Gap duration discrimination was significantly poorer for older listeners than for young and middle-aged listeners, and the performance of the young and middle-aged listeners did not differ significantly. Age group differences were more apparent for the more frequency-disparate stimuli (2000-Hz leading marker followed by a 500-Hz trailing marker) than for the fixed-frequency stimuli (2000-Hz lead and 2000-Hz trail). The gap duration difference limens of the older listeners increased more rapidly with frequency disparity than those of the other listeners. Because age effects were more apparent for the more frequency-disparate conditions, and gap discrimination was not affected by differences in hearing sensitivity among listeners, it is suggested that gap discrimination depends upon temporal mechanisms that deteriorate with age and stimulus complexity but are unaffected by hearing loss.  相似文献   

18.
Experiment 1 measured frequency modulation detection thresholds (FMTs) for harmonic complex tones as a function of modulation rate. Six complexes were used, with fundamental frequencies (F0s) of either 88 or 250 Hz, bandpass filtered into a LOW (125-625 Hz), MID (1375-1875 Hz) or HIGH (3900-5400 Hz) frequency region. The FMTs were about an order of magnitude greater for the three complexes whose harmonics were unresolved by the peripheral auditory system (F0 = 88 Hz in the MID region and both F0s in the HIGH region) than for the other three complexes, which contained some resolved harmonics. Thresholds increased with increases in FM rate above 2 Hz for all conditions. The increase was larger when the F0 was 88 Hz than when it was 250 Hz, and was also larger in the LOW than in the MID and HIGH regions. Experiment 2 measured thresholds for detecting mistuning produced by modulating the F0s of two simultaneously presented complexes out of phase by 180 degrees. The size of the resulting mistuning oscillates at a rate equal to the rate of FM applied to the two carriers. At low FM rates, thresholds were lowest when the harmonics were either resolved for both complexes or unresolved for both complexes, and highest when resolvability differed across complexes. For pairs of complexes with resolved harmonics, mistuning thresholds increased dramatically as the FM rate was increased above 2-5 Hz, in a way which could not be accounted for by the effect of modulation rate on the FMTs for the individual complexes. A third experiment, in which listeners detected constant ("static") mistuning between pairs of frequency-modulated complexes, provided evidence that this deterioration was due the harmonics in one of the two "resolved" complexes becoming unresolved at high FM rates, when analyzed over some finite time window. It is concluded that the detection of time-varying mistuning between groups of harmonics is limited by factors that are not apparent in FM detection data.  相似文献   

19.
A model is presented for the pulse-shaping dynamics in an actively mode-locked laser in which the losses are AM modulated at two harmonic frequencies differing by the cavity fundamental mode spacing and is applied to the case of third and fourth harmonics. Coupling to eight side modes is demonstrated. Computer simulations are implemented for a linear resonator which show the effects of modulation and gain for different initial conditions of field-amplitude and phases. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
Steady state responses to the sinusoidal modulation of the amplitude or frequency of a tone were recorded from the human scalp. For both amplitude modulation (AM) and frequency modulation (FM), the responses were most consistent at modulation frequencies between 30 and 50 Hz. However, reliable responses could also be recorded at lower frequencies, particularly at 2-5 Hz for AM and at 3-7 Hz for FM. With increasing modulation depth at 40 Hz, both the AM and FM response increased in amplitude, but the AM response tended to saturate at large modulation depths. Neither response showed any significant change in phase with changes in modulation depth. Both responses increased in amplitude and decreased in phase delay with increasing intensity of the carrier tone, the FM response showing some saturation of amplitude at high intensities. Both responses could be recorded at modulation depths close to the subjective threshold for detecting the modulation and at intensities close to the subjective threshold for hearing the stimulus. The responses were variable but did not consistently adapt over periods of 10 min. The 40-Hz AM and FM responses appear to originate in the same generator, this generator being activated by separate auditory systems that detect changes in either amplitude or frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号