共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino-functionalized organic films were prepared by self-assembling 3-aminopropyltriethoxysilane (APTES) on silicon wafers in either anhydrous toluene or phosphate-buffered saline (PBS) for varied deposition times. Fourier transform infrared spectroscopy (FTIR) and ellipsometry have shown that the structure and thickness of APTES films are governed by the deposition time and reaction solution. Deposition from an anhydrous toluene solution produces APTES films ranging from 10 to 144 A in thickness, depending on the reaction time. FTIR spectra indicate that film growth initially proceeds by adsorption of APTES to the silicon surface followed by siloxane condensation, and after an extended period of time APTES molecules accumulate on the underlying APTES film by either covalent or noncovalent interactions. In contrast, spectroscopically indistinguishable APTES films in thickness ranging from 8 to 13 A were formed when deposition was conducted in aqueous solutions. Measured water contact angles indicate that APTES films deposited in aqueous solutions are more hydrophilic compared to those prepared in toluene solutions. Fluorescence measurements revealed that APTES films prepared in toluene solutions contain more reactive surface amino groups by ca. 3 to 10 times than those prepared in aqueous solutions for the identical reaction time. 相似文献
2.
《Vibrational Spectroscopy》1999,19(1):61-69
The molecular orientation of very thin films on solid substrates can be determined quantitatively by measuring the polarized infrared (IR) absorption spectra of samples as a function of angle of incidence. The quantitative molecular orientation is derived by fitting the incident angle dependence and the dichroic ratio with theoretical calculations. We applied this method to a technologically important system: liquid crystal (LC)/rubbed polyimide film. To understand the alignment mechanism of LC molecules in contact with rubbed polyimide films, we have quantitatively determined the molecular orientation of rubbed polyimide films and a surface LC layer in contact with a rubbed polyimide film. In this paper two relations are discussed: (1) correlation between the inclination angle of polyimide backbone structures in rubbed films and the pretilt angle of bulk LC in contact with them, and (2) relation among the molecular orientation of a rubbed polyimide film and those of surface and bulk LC layers in contact with it. 相似文献
3.
Erik W. Edwards Mark P. Stoykovich Marcus Müller Harun H. Solak Juan J. de Pablo Paul F. Nealey 《Journal of polymer science. Part A, Polymer chemistry》2005,43(23):3444-3459
Lamellae forming diblock copolymer domains can be directed to assemble without defects and in registration with chemically nanopatterned substrates. Initially, thin films of the lamellar poly(styrene-b-methyl methacrylate) block copolymer form hexagonally close-packed styrene domains when annealed on chemical nanopatterned striped surfaces. These styrene domains then coalesce to form linear styrene domains that are not fully registered with the underlying chemical surface pattern. Defects coarsen, until defect-free directed assembly is obtained, by breaking linear styrene domains and reforming new structures until registered lamellae have been formed. At all stages in the process, two factors play an important role in the observed degree of registration of the block copolymer domains as a function of annealing time: the interfacial energy between the blocks of the copolymer and the chemically nanopatterned substrate and the commensurability of the bulk repeat period of the block copolymer and the substrate pattern period. Insight into the time-dependent three-dimensional behavior of the block copolymer structures is gained from single chain in mean field simulations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3444–3459, 2005 相似文献
4.
The adhesion and friction properties of molecularly thin perfluoropolyether (PFPE) lubricant films dip-coated on a diamond-like carbon (DLC) overcoat of magnetic disks were studied using a pin-on-disk-type micro-tribotester that we developed. The load and friction forces were simultaneously measured on a rotating disk surface under an increasing/decreasing load cycle and slow sliding conditions. Experiments were performed using two types of PFPE lubricants: Fomblin Z-tetraol2000S with functional end-groups and Fomblin Z-03 without any end-group. The curves of the friction force as a function of the applied load agree with the curves estimated using the Johnson-Kendall-Roberts (JKR) model. The friction forces on the Z-03 films having different thicknesses were not found to decrease drastically; however, the friction forces on the Z-tetraol film were found to decrease drastically when the film thickness is more than ~1.2 nm. This drastic change in the case of the Z-tetraol film is estimated to be affected by the coverage of the lubricant film. 相似文献
5.
Rupture of thin stagnant films on a solid surface due to random thermal and mechanical perturbations
Narsimhan G 《Journal of colloid and interface science》2005,287(2):624-633
A generalized formalism for the rupture of a nondraining thin film on a solid support due to imposed random thermal and mechanical perturbations, modeled as a Gaussian white noise, is presented. The evolution of amplitude of perturbation is described by a stochastic differential equation. The average film rupture time is the average time for the amplitude of perturbation to equal to the film thickness and is calculated by employing a first passage time analysis for different amplitudes of imposed perturbations, wavenumbers, film thickness, van der Waals and electrostatic interactions and surface tensions. The results indicate the existence of an optimum wavenumber at which the rupture time is minimum. A critical film thickness is identified based on the sign of the disjoining pressure gradient, below which the film is unstable in that the rupture time is very small. The calculated values of rupture time as well as the optimum wavenumber in the present analysis agree well with the results of linear stability analysis for immobile as well as completely mobile gas-liquid film interfaces. For stable films, the rupture time is found to increase dramatically with film thickness near the critical film thickness. As expected, the average rupture time was found to be higher for smaller amplitudes of imposed perturbations, larger surface potentials, larger surface tensions and smaller Hamaker constants. 相似文献
6.
M. Anitha N. Anitha I. Kulandaisamy L. Amalraj 《Journal of Sol-Gel Science and Technology》2018,86(3):580-589
CdO thin films were deposited on glass, quartz, FTO, silicon wafers of p-type and n-type at 200?°C of substrate temperature employing spray pyrolysis technique using nebulizer. As deposited cadmium oxide thin films were analyzed to find crystallite size, morphology of the substrate, elemental composition and band gap using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and UV–Vis spectrophotometer. Nature of the thin film was found to be polycrystalline with face centered cubic structure with (111) preferential orientation and evaluated structural parameters show significant effect of used substrates. Spherical sized grains were observed on the surface of the thin films using SEM. The EDAX analysis confirmed that cadmium and oxygen were present in the sample. Direct allowed transition with band gap values lying in the range 2.34–2.44?eV for all the films deposited on various substrates. Among, these thin film coated on FTO substrate was found to have high crystallinity with a narrow band gap, which may be more suitable for opto-electronic applications. 相似文献
7.
We report here on the fabrication and characterization of stable thin films of amorphous silica (SiO(x)) deposited on glass slides coated with a 5 nm adhesion layer of titanium and 50 nm of gold, using the plasma-enhanced chemical vapor deposition (PECVD) technique. The resulting surfaces were characterized using atomic force microscopy (AFM), ellipsometry, contact angle measurements, and surface plasmon resonance (SPR). AFM analysis indicates that homogeneous films of silica with low roughness were formed on the gold surface. The deposited silica films showed excellent stability in different solvents and in piranha solution. There was no significant variation in the thickness or in the SPR signal after these harsh treatments. The Au/SiO(x) interfaces were investigated for their potential applications as new surface plasmon resonance sensor chips. Silica films with thicknesses up to 40 nm allowed visualization of the surface plasmon effect, while thicker films resulted in the loss of the SPR characteristics. SPR allowed further the determination of the silica thickness and was compared to ellipsometric results. Chemical treatment of the SiO(x) film with piranha solution led to the generation of silanol surface groups that have been coupled with a trichlorosilane. 相似文献
8.
High-quality epitaxial thin films of the ferromagnetic metallic oxide SrRuO3 (SRO) were fabricated by dc-sputtering at high oxygen pressure and their structural and magnetoelectrical properties were carefully studied. The films featured a Curie temperature TC ~ 160 K and a magnetic moment of ~0.7 μB per Ru ion. The temperature dependent magnetization could be well described by the scaling relation M(T) ∝ (TC ? T)β with a critical exponent β = 0.53 over the entire ferromagnetic temperature range. A negative magnetoresistance, MR, on the order of a few percent was found up to room temperature. MR showed a maximum of ~4% right at TC where a kink structure of the resistivity, ρ, at zero field was flattened out on magnetic field application. This ρ contribution could be related to scattering due to orientational disorder of the Ru magnetic moments which become aligned by an external magnetic field. In addition, an equally strong MR effect, related to localization phenomena, could be observed at lower temperature. Particularly, the second MR peak at ~35 K might be related to a Fermi-liquid to non-Fermi-liquid crossover. A scaling behavior dρ/dT ∝ |T ? TC|α was observed only above TC. Here, values for the exponent α ≈ ?0.4 and α ≈ ?1.4 were obtained in zero field and in a field of 9 T, respectively. The commonly observed ρ minimum, appearing at low temperatures (~3 K in the present case), is correlated with the structural disorder of the SRO films and is believed to have its origin in quantum corrections to the conductivity (QCC). 相似文献
9.
Ye S Noda H Nishida T Morita S Osawa M 《Langmuir : the ACS journal of surfaces and colloids》2004,20(2):357-365
The molecular structures and their stabilities at the outmost-layer of the Langmuir-Blodgett (LB) films of stearic acid on solid substrates have been investigated by a highly surface-sensitive spectroscopic technique, sum frequency generation (SFG), in air and in aqueous solution, using the combination of both normal and deuterated stearic acid. Peaks observed in the SFG spectra are mainly attributed to the terminal methyl group at the outmost layer of the LB films. The SFG spectra in air are virtually identical and are independent of the odd-even property and thickness (1-12) of the LB films, indicating that the even-numbered LB film changes its surface structure after passing through the interface between the water subphase and air, especially when the Cd2+ cation was included in the water subphase. Furthermore, we have demonstrated for the first time using in situ SFG measurement that the interfacial molecular structure at the LB bilayer of stearic acid on the hydrophilic substrates significantly change with immersion in the water subphase containing Cd2+ cation while such a structural change has not been observed in the water subphase without Cd2+. These results clearly indicate that a reorganization process takes place on the surface of the stearic acid bilayer induced by the Cd2+ cation. The electrostatic interaction between the carboxylate headgroup of stearic acid via the Cd2+ cation seems to play an important role in the surface reorganization process both in air and in solution. 相似文献
10.
《Surface and interface analysis : SIA》2018,50(7):744-751
Gold‐induced (Au‐) crystallization of amorphous germanium (α‐Ge) thin films was investigated by depositing Ge on aluminum‐doped zinc oxide and glass substrates through electron beam evaporation at room temperature. The influence of the postannealing temperatures on the structural properties of the Ge thin films was investigated by employing Raman spectra, X‐ray diffraction, and scanning electron microscopy. The Raman and X‐ray diffraction results indicated that the Au‐induced crystallization of the Ge films yielded crystallization at temperature as low as 300°C for 1 hour. The amount of crystallization fraction and the film quality were improved with increasing the postannealing temperatures. The scanning electron microscopy images show that Au clusters are found on the front surface of the Ge films after the films were annealed at 500°C for 1 hour. This suggests that Au atoms move toward the surface of Ge film during annealing. The effects of annealing temperatures on the electrical conductivity of Ge films were investigated through current‐voltage measurements. The room temperature conductivity was estimated as 0.54 and 0.73 Scm−1 for annealed samples grown on aluminum‐doped zinc oxide and glass substrates, respectively. These findings could be very useful to realize inexpensive Ge‐based electronic and photovoltaic applications. 相似文献
11.
《Electrochemistry communications》2008,10(7):1041-1043
The paper reports on the deposition of thin antimony (Sb)-doped SnO2 films onto gold and silver substrates using magnetron sputtering. The influence of the SnO2:Sb film on the electrochemical and surface plasmon resonance properties is investigated. The best results in terms of stability, electrochemical and plasmonic characteristics are obtained for SnO2:Sb of 8.5 nm thickness deposited on silver substrates. 相似文献
12.
《Rapid communications in mass spectrometry : RCM》2005,19(8):1017-1024
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
Duś R Nowicka E Nowakowski R 《Langmuir : the ACS journal of surfaces and colloids》2004,20(21):9138-9143
The electron scattering cross section on the surface of thin silver and gold films induced by adsorption of atomic deuterium under conditions when a single adsorption state is formed was determined. Adsorption of atomic deuterium carried out at 78 K on sintered thin silver (gold) films deposited on Pyrex glass under ultrahigh vacuum conditions was studied measuring the resistance changes DeltaR "in situ". The adsorption runs performed at various exposures were followed by thermal desorption. This allowed establishment of a correlation between DeltaR and the uptake of the adsorbate. BET measurements were performed to determine the real area of the thin films and calculate the density of the adsorbate on their surface. It was found that in agreement with Wissmann's equation1 a linear dependence of DeltaR on the density of the adsorbate nads exists within a large interval of the population (nads < or = 1 x 10(15) D adatoms/cm2 on silver and 7 x 10(14) D adatoms/cm2 on gold) available under our experimental conditions. On the basis of this equation the electron scattering cross section Aads induced by adsorption of atomic deuterium on sintered thin silver and gold films was calculated as reaching 4.75 x 10(-16) and 4.46 x 10(-16) cm2, respectively. A small isotope effect in the electron scattering cross section for adsorption of hydrogen on silver was observed: Aads = 5.48 x 10(-16) cm2. 相似文献
14.
We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure. 相似文献
15.
Fiorilli S Camarota B Garrone E Onida B 《Physical chemistry chemical physics : PCCP》2011,13(3):1201-1209
Proton-donor ability of carboxylic groups incorporated by co-condensation into SBA-15 and ethane-bridged periodic mesoporous organosilica (PMO) has been studied through IR spectroscopy by dosing ammonia, which forms reversibly COO(-) groups and NH(4)(+) ions. The related equilibrium constants, determined by elaboration of IR data, reveal a lower reactivity of -COOH groups at the surface of PMO than on SBA-15, when the two samples have been outgassed at the same temperature. This finding is interpreted in terms of different dielectric constants and intermolecular interactions engaged with the surface species. Carboxylic groups on ethane-bridged organosilica react with silanols upon thermal treatment at 473 K to form a mixed anhydride species Si-O-C(O)-, at variance with the same groups on SBA-15. 相似文献
16.
17.
Chen B Pernodet N Rafailovich MH Bakhtina A Gross RA 《Langmuir : the ACS journal of surfaces and colloids》2008,24(23):13457-13464
A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity. 相似文献
18.
Postawa Z Czerwinski B Winograd N Garrison BJ 《The journal of physical chemistry. B》2005,109(24):11973-11979
Molecular dynamics computer simulations have been employed to model the bombardment of Ag{111} covered with three layers of C6H6 by 15 keV Ga and C60 projectiles. The study is aimed toward examining the mechanism by which molecules are desorbed from surfaces by energetic cluster ion beams and toward elucidating the differences between cluster bombardment and atom bombardment. The results show that the impact of the cluster on the benzene-covered surface leads to molecular desorption during the formation of a mesoscopic scale impact crater via a catapulting mechanism. Because of the high yield of C6H6 with both Ga and C60, the yield enhancement is observed to be consistent with related experimental observations. Specific energy and angle distributions are shown to be associated with the catapult mechanism. 相似文献
19.