首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach for expanding incomplete experimental mode shapes is presented which considers the modelling errors in the analytical model and the uncertainties in the vibration modal data measurements. The proposed approach adopts the perturbed force vector that includes the effect of the discrepancy in mass and stiffness between the finite element model and the actual tested dynamic system. From the developed formulations, the perturbed force vector can be obtained from measured modal data and is then used for predicting the unmeasured components of the expanded experimental mode shapes. A special case that does not require the experimental natural frequency in the mode shape expansion process is also discussed. A regularization algorithm based on the Tikhonov solution incorporating the generalized cross-validation method is employed to filter out the influence of noise in measured modal data on the predictions of unmeasured mode components. The accuracy and robustness of the proposed approach is verified with respect to the size of measured data set, sensor location, model deficiency and measurement uncertainty. The results from two numerical examples, a plane frame structure and a thin plate structure, show that the proposed approach has the best performance compared with the commonly used existing expansion methods, and can reliably produce the predictions of mode shape expansion, even in the cases with limited modal data measurements, large modelling errors and severe measurement noise.  相似文献   

2.
In-operation modal analysis has become a valid alternative for structures where a classic input-output test would be difficult if not impossible to conduct. Due to practical considerations, measurements are sometimes performed in patches (roving sensor setups) instead of covering the entire structure at once. In practice, one is often confronted with non-stationary ambient excitation sources (e.g., wind, traffic, waves, etc.). Since the scaling of operational mode shape estimates depends on the unknown level of the ambient excitation, an extra effort is required in order to correctly merge the different parts of the mode shapes. In this contribution, two different approaches, for merging operational mode shapes from non-stationary data, are proposed. Both methods are based upon a single maximum likelihood estimation procedure. For comparison and validation, both techniques were applied to non-stationary data sets obtained by scanning laser vibrometry as well as the Z24 bridge bench mark data.  相似文献   

3.
A new method of identifying modal parameters by decomposing response signals with Gabor transform is presented in this paper to estimate natural frequencies, damping ratios and mode shapes of linear time invariant systems. According to Gabor expansion theory, responses of a multi-degree-of-freedom system can be decomposed into uncoupled signal components, each vibrating at a single natural frequency. From these uncoupled signals, modal parameters are subsequently extracted with common methods. The proposed method can process stationary and non-stationary responses and requires no input signal except for the response signals generated by unknown excitation acting on a system. In the sense of less restriction on the in-out signals, the approach based on time-frequency decomposition is very general. A simulation study on a simply supported beam under non-stationary excitation has demonstrated that the proposed method is effective in parameter estimation.  相似文献   

4.
A simple random repeated impact process which has previously been investigated theoretically has now been investigated experimentally. The process, which consists of a ball bouncing on a randomly vibrating surface, is analogous to loss of contact situations which can occur in machinery and transportation systems where a hard rolling element separates from the rolling surface. Experimental data was acquired and processed by using a digital data acquisition system and associated software. The results were obtained in the form of histograms which could be directly compared with the predicted probability density functions. The agreement between the predicted behaviour and the measured results was excellent, and confirmed the dependence of the behaviour of the random process on the coefficient of restitution and the excitation level. Also, it was verified that the probability density function of table velocities at impact was distinct from the Gaussian density function of the excitation. Consequently the theoretical analysis previously developed has been validated with sufficient confidence to enable it to be applied to predictions of acoustic noise generated by the impact process.  相似文献   

5.
An unsteady lifting-surface theory for a rotating subsonic annular cascade has been developed to predict the unsteady blade forces and the acoustic power generation caused by interaction of blades with inlet distortions or wakes. Disturbance pressure and velocity fields induced by the rotor blades with fluctuating blade force are expressed in terms of the blade force distribution and kernel functions. The spanwise distribution of the blade force is given as a sum of blade force modes, and the kernel functions are resolved into the corresponding modal components. The sound pressure and intensity are expressed as a sum of acoustic modes, the modal components of which are given in terms of the blade force mode components.Numerical computations have been conducted .for interaction with the external disturbance flows that are sinusoidal in the circumferential direction, but possess a phase skewing in the radial direction. Correlations among the acoustic modes, the blade force modes and the flow patterns of the external disturbance have been investigated. When the predominant acoustic mode is subresonant, the blade force amplitude is reduced by the three-dimensional effect, which is lessened as the frequency increases. At deeply superresonant states, however, the three-dimensional effect upon the spanwise average of the blade force amplitude is small. The generated sound power is effectively reduced by increasing the radial non-uniformity of the external disturbance.  相似文献   

6.
边界层抽吸式推进系统(BLI)因具有降低未来商用飞机燃油消耗率的巨大潜力而备受关注.但风扇叶片作为关键组件,需要受到由于边界层吸入而导致的畸变来流的挑战.基于本团队前期在NASA Rotor 67进行的数值模拟,在设计转速附近风扇因受到二阶激励而以一阶弯曲的形式发生低阶模态振动,同时,激发的强度足以引起叶片振动.由于来...  相似文献   

7.
The accurate and reliable estimation of modal damping from output-only vibration measurements of structural systems is a continuing challenge in the fields of operational modal analysis (OMA) and system identification. In this paper a modified version of the blind source separation (BSS)-based Second-Order Blind Identification (SOBI) method was used to perform modal damping identification on a model bridge structure under varying loading conditions. The bridge model was created with finite elements and consisted of a series of stringer beams supported by a larger girder. The excitation was separated into two categories: ambient noise and traffic loads with noise modeled with random forcing vectors and traffic simulated with moving loads for cars and partially distributed moving masses for trains. The acceleration responses were treated as the mixed output signals for the BSS algorithm. The modified SOBI method used a windowing technique to maximize the amount of information used for blind identification from the responses. The modified SOBI method successfully found the mode shapes for both types of excitation with strong accuracy, but power spectral densities (PSDs) of the recovered modal responses showed signs of distortion for the traffic simulations. The distortion had an adverse affect on the damping ratio estimates for some of the modes but no correlation could be found between the accuracy of the damping estimates and the accuracy of the recovered mode shapes. The responses and their PSDs were compared to real-world collected data and patterns similar to distortion were observed implying that this issue likely affects real-world estimates.  相似文献   

8.
超声Lamb波二次谐波发生效率分析与模式选择   总被引:2,自引:0,他引:2       下载免费PDF全文
在导波模式展开分析方法的基础上,提出激发效率参量来定量表征超声Lamb波积累二次谐波的发生效率。以P92钢板为例,理论计算得到了与频散曲线对应的理论激发效率参量分布图谱,从图谱中选择理论激发效率参量大小不同的两种基频Lamb波模式:纵波型S1模式和交点型A2/S2模式,分别测量这两种基频Lamb波模式在钢板中传播时产生的二次谐波信号。理论计算和实验测量结果表明,这两种基频Lamb波模式的理论和实验激发效率参量的比值基本一致,且激发效率参量较大的纵波型S1模式能激发出效率更高的二次谐波信号。研究结果表明激发效率参量可以有效的用于Lamb波二次谐波发生效率的表征及模式选择。   相似文献   

9.
We present an experimental demonstration of heralded single photons prepared in pure quantum states from a parametric down-conversion source. It is shown that, through controlling the modal structure of the photon pair emission, one can generate pairs in factorable states and thence eliminate the need for spectral filters in multiple-source interference schemes. Indistinguishable heralded photons were generated in two independent spectrally engineered sources and Hong-Ou-Mandel interference observed between them without spectral filters. The measured visibility of 94.4% sets a minimum bound on the mean photon purity.  相似文献   

10.
Analytical models of the human skull structure have generally been constructed so as to characterize the gross geometric features and material properties; however, a model should also have accurate frequency response characteristics since these are essential for collision and head injury analyses. An experimental investigation was conducted to identify the dynamic characteristics of freely vibrating human skulls. Resonant frequencies and associated mode shapes in the frequency band from 20 Hz to 5000 Hz were delineated for two dry human skulls. Osteometrically, one skull corresponds to a 50th percentile male (skull 1) and the second is representative of a 5th percentile female skull (skull 2). Digital Fourier analysis techniques were used to identify the resonant frequencies and corresponding mode shapes of each skull. Eleven resonant frequencies were identified for skull 1, with the lowest being 1385 Hz. In contrast, skull 2 exhibited only 6 resonant frequencies with the first being 1641 Hz. Nine mode shapes were identified for skull 1, but only 5 modes were recognized for skull 2. The vibrational pattern of the human skull, as indicated by its mode shapes in this limited study, seems to be a unique property of a particular skull. Skull satures did not appear to influence the modal pattern.  相似文献   

11.
When operational modal analysis (OMA) is used to estimate modal parameters, mode shapes cannot be mass normalized. In the past few years, some equations have been proposed to scale mode shapes using the mass-change method, which consists of repeating modal testing after changing the mass at different points of the structure where the mode shapes are known. In this paper, the structural-dynamic-modification theory is used to derive a set of equations, from which all the existing formulations can be derived. It is shown that the known equations can be divided into two types, the exact and the approximated equations, where the former type does in fact fulfill the equations derived from the theory of structural modification, whereas the remaining equations do not, mainly because the change of the mode shapes of the modified structure is not properly taken into account. By simulations, the paper illustrates the large difference in accuracy between the approximate and the exact formulations. The paper provides two new exact formulations for the scaling factors, one for the non-modified structure and – for the first time in the literature – one for the modified structure. The simulations indicate the influence of errors from the measured natural frequencies and mode shapes on the estimation of the scaling factors using the two exact formulations from the literature and the new exact formulation proposed in this paper. In addition, the paper illustrates statistics of the errors on mode-shape scaling. All simulations were carried out using a plate with closely spaced modes.  相似文献   

12.
A method for calculating the steady state displacement response and force transmission at the wheel axle of a pneumatic tire-suspension system due to a steady state force or displacement excitation at the tire to ground contact point is developed. The method requires the frequency responses (or receptances)_of both tire-wheel and suspension units. The frequency response of the tire-wheel unit is obtained by using the modal expansion method. The natural frequencies and mode shapes of the tire-wheel unit are obtained by using a geometrically non-linear, ring type, thin shell finite element of laminate composite. The frequency response of the suspension unit is obtained analytically. These frequency responses are used to calculate the force-input and the displacement-input responses at the wheel axle. This method allows the freedom of designing a vehicle and its tires independently and still achieving optimum dynamic performance.  相似文献   

13.
A direct estimation method for expanding incomplete experimental mode shapes is presented. The approach adopts a hybrid vector which includes measured data at master degrees of freedom (dofs) and constant values at slave dofs. The constant values are refined by a set of mode-correction factors. Modelling errors between the analytical model and tested structure are also considered by introducing a series of model-correction factors. Initial-guess values of the mode-correction factors are used to decouple the coupled constructed equations, and an iterative technique for solving these equations is proposed. The results from a five-degree-of-freedom mass–spring system indicate that the proposed approach provided a better performance than the commonly used existing expansion methods and can reliably estimate unmeasured components of mode shapes, even in cases with limited modal measurements and severe measurement noise. The performance of the proposed method was also investigated using real measurements from a steel cantilever-beam experiment. Experimental data were measured by 20 accelerometers mounted at the cantilever beam: among these accelerometers, three of these were assumed to be measured, and the others were used to check the estimation accuracy of the proposed method. The results show that the unmeasured components in the mode shapes were properly estimated by implementing the proposed method, even for high-frequency modes.  相似文献   

14.
Miniature components and devices are increasingly seen in a myriad of applications. In general, the dynamic behavior of miniature devices is critical to their functionality and performance. However, modal testing of miniature structures poses many challenges. This paper presents a design and evaluation of an impact excitation system (IES) for repeatable, high-bandwidth, controlled-force modal testing of miniature structures. Furthermore, a dynamic model of the system is derived and experimentally validated to enable the identification of the system parameters that yield single-hit impacts with desired bandwidth and force magnitude. The system includes a small instrumented impact tip attached to a custom designed flexure-based body, an automated electromagnetic release mechanism, and various precision positioners. The excitation bandwidth and the impact force magnitude can be controlled by selecting the system parameters. The dynamic model of the system includes the structural dynamics of the flexure-based body, the electromagnetic force and the associated eddy-current damping, and the impact event. A validation study showed an excellent match between the model simulations and experiments in terms of impact force and bandwidth. The model is then used to create process maps that relate the system parameters to the number of hits (single vs. multiple), the impact force magnitudes and the excitation bandwidths. These process maps can be used to select system parameters or predict system response for a given set of parameters. A set of experiments is conducted to compare the performances of the IES and a (manual) miniature impact hammer. It is concluded that the IES significantly improves repeatability in terms of the impact bandwidth, location, and force magnitude, while providing a high excitation-bandwidth and excellent coherence values. The application of the IES is demonstrated through modal testing of a miniature contact-probe system.  相似文献   

15.
Sources for optical fibre excitation have previously been assumed to be either totally coherent or incoherent. This paper formulates the modal excitation problem for partially coherent sources. The modal excitation coefficients are given in terms of the source complex degree of coherence and numerical results and simple analytical expressions appropriate to multimode step index fibres are presented. The assumption of equal modal power when excitation is by a very incoherent source is examined and the following simple criterion developed: for highly incoherent sources, modes with eigenvaluesU < the reciprocal of the coherence length, measured in units of fibre radius, are approximately equally excited, while the remaining modes carry little power.  相似文献   

16.
Methods for scaling mode shapes determined by operational modal analysis (OMA) have been extensively investigated in the last years. A recent addition to the range of methods for scaling OMA mode shapes is the so-called OMAH technique, which is based on exciting the structure by harmonic forces applied by an actuator. By applying harmonic forces in at least one degree-of-freedom (DOF), and measuring the response in at least one response DOF, while using at least as many frequencies as the number of mode shapes to be scaled, the mode shape scaling (modal mass) of all modes of interest may be determined. In previous publications on the method the authors have proven that the technique is easy and robust to apply to both small scale and large scale structures. Also, it has been shown that the technique is capable of scaling highly coupled modes by using an extended multiple reference formulation. The present paper summarizes the theory of the OMAH method and gives recommendations of how to implement the method for best results. It is pointed out, as has been shown in previous papers, that the accuracy of the mode scaling is increased by using more than one response DOF, and by selecting DOFs with high mode shape coefficients. To determine the harmonic force and responses, it is recommended to use the three-parameter sine fit method. It is shown that by using this method, the measurement time can be kept short by using high sampling frequency and bandpass filtering whereas spectrum based methods require long measurement times. This means that even for structures with low natural frequencies, the extra measurement time for scaling the mode shapes can be kept relatively short.  相似文献   

17.
Similarities and differences in vibrational behavior of two guitars having a symmetric Torres bracing pattern and an asymmetric pattern forming a lattice on a soundboard are investigated by means of the modal analysis technique and laser Doppler vibrometry (LDV) measurements. Instruments are investigated before and after a bridge and strings assembling (i.e., they are incomplete or complete). The bracing pattern and the absence/presence of the bridge and strings have some effect on modal frequencies and mode shapes. The bracing pattern does not affect the sequence of at least first three low frequency mode shapes of incomplete/complete instruments but affects their modal frequencies. Depending on frequency, the bridge behaves either as a rigid or a flexible structure.  相似文献   

18.
The effect of rapid thermal annealing (RTA) on the shapes of GaAs/AlGaAs quantum wells (QWs) has been investigated by monitoring exciton energies using low temperature photoluminescence and photoluminescence excitation spectroscopies. After RTA, large changes in exciton energies were observed only in regions of the samples in which excess surface vacancies were generated, either by capping with a thin layer of SiO2 or by low-energy ion implantation. These changes were interpreted as resulting from modifications of the shapes of the as-grown QWs from abrupt or square to gradual (rounded) due to enhanced interdiffusion of well/barrier atoms. For single QWs there was an increase in exciton energy whose magnitude depended on the width of the well, its distance from the surface of the wafer, the annealing temperature and the total number of surface vacancies available. From studies of coupled QWs, there was clear evidence of asymmetry in the heterostructure after RTA. Although both techniques of vacancy generation yield substantial QW shape modifications, the ion implantation technique has the advantages of being highly reproducible and of being compatible with any material system.  相似文献   

19.
This paper presents the measurement and analysis of rolling tire vibrations due to road impact excitations, such as from cobbled roads, junctions between concrete road surface plates, railroad crossings. Vibrations of the tire surface due to road impact excitations cause noise radiation in the frequency band typically below 500 Hz. Tire vibration measurements with a laser Doppler vibrometer are performed on a test set-up based on a tire-on-tire principle which allows highly repetitive and controllable impact excitation tests under various realistic operating conditions. The influence on the measured velocity of random noise, cross sensitivity and alignment errors is discussed. An operational modal analysis technique is applied on sequential vibration measurements to characterise the dynamic behaviour of the rolling tire. Comparison between the operational modal parameters of the rolling tire and the modal parameters of the non-rolling tire allows an assessment of the changes in dynamic behaviour due to rolling.  相似文献   

20.
We study numerically the conversion of transverse modes in a few-mode fiber using long-period gratings that are optically induced by femtosecond pulses. The gratings are transiently generated via the Kerr effect by the modal beating of a high-power write beam that excites a combination of transverse modes. The spectral properties and the influence of pulse walkoff on the conversion are investigated. Furthermore, by delaying the write pulse with respect to the probe pulse and choosing a suitable target mode profile, we show the temporal characteristics of a novel optical switch that can be realized based on this principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号