首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydride transfer from dihydronicotinamide adenine dinucleotide (NADH) analogues, such as 10-methyl-9,10-dihydroacridine (AcrH 2) and its derivatives, 1-benzyl-1,4-dihydronicotinamide (BNAH), and their deuterated compounds, to non-heme oxoiron(IV) complexes such as [(L)Fe (IV)(O)] (2+) (L = N4Py, Bn-TPEN, and TMC) occurs to yield the corresponding NAD (+) analogues and non-heme iron(II) complexes in acetonitrile. Hydride transfer from the NADH analogues to p-chloranil (Cl 4Q) also occurs to produce the corresponding NAD (+) analogues and the hydroquinone anion (Cl 4QH (-)). The logarithms of the observed second-order rate constants (log k H) of hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes are linearly correlated with those of hydride transfer from the same series of NADH analogues to Cl 4Q, including similar kinetic deuterium isotope effects. The log k H values of hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes are also linearly correlated with those of deprotonation of the radical cations of NADH analogues. Such linear correlations indicate that overall hydride-transfer reactions of NADH analogues to both non-heme oxoiron(IV) complexes and Cl 4Q occur via electron transfer from NADH analogues to the oxoiron(IV) complexes, followed by rate-limiting deprotonation from the radical cations of NADH analogues and subsequent rapid electron transfer from the deprotonated radicals to the Fe(III) complexes to yield the corresponding NAD (+) analogues and the Fe(II) complexes. The electron-transfer pathway was accelerated by the presence of perchloric acid, and the resulting radical cations of NADH analogues were detected by electron spin resonance spectroscopy and UV-vis spectrophotometry in the acid-promoted hydride-transfer reactions from NADH analogues to non-heme oxoiron(IV) complexes. This result provides the first direct evidence that a hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes proceeds via an electron-transfer pathway.  相似文献   

2.
Oxidation of the Fe(III) complex (TBP(8)Cz)Fe(III) [TBP(8)Cz = octakis(4-tert-butylphenyl)corrolazinate] with O-atom transfer oxidants under a variety of conditions gives the reactive high-valent Fe(O) complex (TBP(8)Cz(+?))Fe(IV)(O) (2). The solution state structure of 2 was characterized by XAS [d(Fe-O) = 1.64 ?]. This complex is competent to oxidize a range of C-H substrates. Product analyses and kinetic data show that these reactions occur via rate-determining hydrogen-atom transfer (HAT), with a linear correlation for log k versus BDE(C-H), and the following activation parameters for xanthene (Xn) substrate: ΔH(++) = 12.7 ± 0.8 kcal mol(-1), ΔS(++) = -9 ± 3 cal K(-1) mol(-1), and KIE = 5.7. Rebound hydroxylation versus radical dimerization for Xn is favored by lowering the reaction temperature. These findings provide insights into the factors that control the intrinsic reactivity of Compound I heme analogues.  相似文献   

3.
The structural and physicochemical properties of the manganese-corrolazine (Cz) complexes (TBP8Cz)Mn(V)O (1) and (TBP8Cz)Mn(III) (2) (TBP = p-tert-butylphenyl) have been determined. Recrystallization of 2 from toluene/MeOH resulted in the crystal structure of (TBP8Cz)Mn(III)(CH3OH) (2 x MeOH). The packing diagram of 2 x MeOH reveals hydrogen bonds between MeOH axial ligands and meso N atoms of adjacent molecules. Solution binding studies of 2 with different axial ligands (Cl-, Et3PO, and Ph3PO) reveal strong binding, corroborating the preference of the Mn(III) ion for a five-coordinate environment. High-frequency and field electron paramagnetic resonance (HFEPR) spectroscopy of solid 2 x MeOH shows that 2 x MeOH is best described as a high-spin (S = 2) Mn(III) complex with zero-field splitting parameters typical of corroles. Structural information on 1 was obtained through an X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) study and compared to XANES/EXAFS data for 2 x MeOH. The XANES data for 1 shows an intense pre-edge transition characteristic of a high-valent metal-oxo species, and a best fit of the EXAFS data gives a short Mn-O bond distance of 1.56 A, confirming the structure of the metal-oxo unit in 1. Detailed spectroelectrochemical studies of 1 and 2 were performed revealing multiple reversible redox processes for both complexes, including a relatively low potential for the Mn(V) --> Mn(IV) process in 1 (near 0.0 V vs saturated calomel reference electrode). Chemical reduction of 1 results in the formation of a Mn(III)Mn(IV)(mu-O) dimer as characterized by electron paramagnetic resonance spectroscopy.  相似文献   

4.
The spectroscopic and chemical characterization of a new synthetic non-heme iron(IV)-oxo species [Fe(IV)(O)((Me,H) Pytacn)(S)](2+) (2, (Me,H)Pytacn=1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane, S=CH(3)CN or H(2)O) is described. Complex 2 was prepared by reaction of [Fe(II)(CF(3)SO(3))(2)((Me,H) Pytacn)] (1) with peracetic acid. Complex 2 bears a tetradentate N(4) ligand that leaves two cis sites available for binding an oxo group and a second external ligand but, unlike the related iron(IV)-oxo species with tetradentate ligands, it is remarkably stable at room temperature (t(1/2)>2 h at 288 K). Its ability to exchange the oxygen atom of the oxo ligand with water has been analyzed in detail by means of kinetic studies, and a mechanism is proposed on the basis of DFT calculations. Hydrogen-atom abstraction from C-H bonds and oxygen-atom transfer to sulfides by 2 have also been studied. Despite its thermal stability, 2 proves to be a very powerful oxidant that is capable of breaking the strong C-H bond of cyclohexane (bond dissociation energy=99.3 kcal mol(-1)).  相似文献   

5.
The synthesis and characterization of an oxomanganese(V) corrolazine, (TBP)8(Cz)Mn(V)O (2), are reported. This remarkably stable high-valent complex is obtained from the stoichiometric reaction of (TBP)8(Cz)Mn(III) (1) with m-CPBA and is easily purified by standard chromatographic methods on silica gel at room temperature. Complex 2 exhibits a diamagnetic 1H NMR spectrum indicative of a low-spin d2 Mn(V)O species. LDI-TOFMS of 2 shows the predicted isotopic envelope at m/z 1426.8. This envelope shifts to higher mass as expected after the facile exchange of the terminal oxo group with H218O. The resonance Raman spectrum of 2 either in solution or in the solid state shows a strongly enhanced Raman band for the stretching mode of the Mn-oxo bond, which also shifts as expected upon 18O substitution: 2(16O), 979 cm-1; 2(18O), 938 cm-1 (in CH2Cl2). Initial reactivity studies show that 2 rapidly transfers the terminal oxo ligand to PPh3, resulting in the quantitative formation of OPPh3 and concomitant reduction of 2 back to 1. Complex 2 is the first example of an oxomanganese(V)-porphyrinoid complex that can be isolated at room temperature.  相似文献   

6.
Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.  相似文献   

7.
High-valent metal-oxo complexes are postulated as key intermediates for a wide range of enzymatic and synthetic processes. To gain an understanding of these processes, the reactivity of an isolated, well-characterized Mn(V)-oxo complex, (TBP8Cz)MnVO (1), (TBP8Cz = octakis(para-tert-butylphenyl)corrolazinato(3-)) has been examined. This complex has been shown to oxidize a series of substituted phenols (4-X-2,6-t-Bu2C6H2OH, X = C(CH3)3 (3), H, Me, OMe, CN), resulting in the production of phenoxyl radicals and the MnIII complex [(TBP8Cz)MnIII] (2). Kinetic studies have led to the determination of second-order rate constants for the phenol substrates, which give a Hammett correlation ((log k'x/k'H) vs sigmap+) with rho = -1.26. A plot of log k versus BDE(O-H) also reveals a linear correlation. These data, combined with a KIE of 5.9 for 3-OD, provide strong evidence for a concerted hydrogen-atom-abstraction mechanism. Substrates with C-H bonds (1,4-cyclohexadiene and 9,10-dihydroanthracene) are also oxidized via H-atom abstraction by 1, although at a much slower rate. Given the stability of 1, and in particular its low redox potential, (-0.05 V vs SCE), the observed H atom abstraction ability is surprising. These findings support a hypothesis regarding how certain heme enzymes can perform difficult H-atom abstractions while avoiding the generation of high-valent metal-oxo intermediates with oxidation potentials that would lead to the destruction of the surrounding protein environment.  相似文献   

8.
Clear elucidation of the oxidative relationships of the active metal hydroperoxide moiety with its corresponding metal oxo and hydroxo intermediates would help the understanding of the different roles they may play in redox metalloenzymes and oxidation chemistry. Using an Mn(Me(2)EBC)Cl(2) complex, it was found that, in t-butanol-water (4 : 1) with excess H(2)O(2) at pH 1.5, the Mn(IV)-OOH moiety may exist in the catalytic solution with a mass signal of m/z = 358.1, which provides a particular chance to investigate its oxidative properties. In catalytic oxidations, the Mn(IV)-OOH moiety demonstrates a relatively poor activity in hydrogen abstraction from diphenyl methane and ethylbenzene with TOF of only 1.2 h(-1) and 1.1 h(-1) at 50 °C, whereas it can efficiently oxygenate diphenyl sulfide, methyl phenyl sulfide and benzyl phenyl sulfide with TOF of 13.8 h(-1), 15.4 h(-1) and 17.8 h(-1), respectively. In mechanistic studies using H(2)(18)O and H(2)(18)O(2), it was found that, in the Mn(IV)-OOH moiety mediated hydrogen abstraction and sulfide oxygenations, the reaction proceeds by two parallel pathways: one by direct oxygen insertion/transfer, and the other by plausible electron transfer. Together with a good understanding of the corresponding manganese(IV) oxo and hydroxo intermediates, this work provides the first chance to compare the reactivity differences and similarities of the active metal oxo, hydroxo and hydroperoxide intermediates. The available evidence reveals that the Mn(IV)-OOH moiety has a much more powerful oxidizing capability than the corresponding Mn(IV)=O and Mn(IV)-OH functional groups in both hydrogen abstraction and oxygenation.  相似文献   

9.
Synthesis and characterization of the first manganese(II)-containing heavier thiocarboxylate analogues, [L(Dip) Si(?S)OMnL(Dep) ] (4; L(Dip) =CH[C(Me)N(2,6-iPr(2) C(6) H(3) )](2) , L(Dep) =CH[C(Me)N(2,6-Et(2) C(6) H(3) )](2) ) and [L(Dip) Ge(?S)OMnL(Dep) ] (5) are described. They are accessible through reaction of the silicon and germanium analogues of the respective thiocarboxylic acids [L(Dip) E(?S)OH] (E=Si, Ge) with the β-diketiminato (nacnac) manganese(II) hydride precursor [(L(Dep) Mn)(2) (μ-H)(2) ] (3) in high yield. The first Mn nacnac hydride 3 has been prepared by the reaction of manganese bromide [(L(Dep) Mn)(2) (μ-Br)(2) ] (2) with KBEt(3) H. Compounds 4 and 5 represent the first transition-metal heavier thiocarboxylates with the Si?S and Ge?S functionalities. All new compounds are paramagnetic and were characterized by elemental analysis, IR spectroscopy, MS (EI), and single-crystal X-ray diffraction analyses. Due to the N→E (E=Si, Ge) and E=S→Mn donor-acceptor interaction as well as the carboxylate-like π-electron delocalization within the E(S)O moieties, the E?S double bonds in these compounds are resonance stabilized.  相似文献   

10.
Ferric tetraamido macrocyclic ligand (TAML)-based catalysts [Fe{C(6)H(4)-1,2-(NCOCMe(2)NCO)(2)CR(2)}(OH(2))]PPh(4) [1; R = Me (a), Et (b)] are oxidized by m-chloroperoxybenzoic acid at -40 °C in acetonitrile containing trace water in two steps to form Fe(V)oxo complexes (2a,b). These uniquely authenticated Fe(V)(O) species comproportionate with the Fe(III) starting materials 1a,b to give μ-oxo-(Fe(IV))(2) dimers. The comproportionation of 1a-2a is faster and that of 1b-2b is slower than the oxidation by 2a,b of sulfides (p-XC(6)H(4)SMe) to sulfoxides, highlighting a remarkable steric control of the dynamics. Sulfide oxidation follows saturation kinetics in [p-XC(6)H(4)SMe] with electron-rich substrates (X = Me, H), but changes to linear kinetics with electron-poor substrates (X = Cl, CN) as the sulfide affinity for iron decreases. As the sulfide becomes less basic, the Fe(IV)/Fe(III) ratio at the end of reaction for 2b suggests a decreasing contribution of concerted oxygen-atom transfer (Fe(V) → Fe(III)) concomitant with increasing electron transfer oxidation (Fe(V) → Fe(IV)). Fe(V) is more reactive toward PhSMe than Fe(IV) by 4 orders of magnitude, a gap even larger than that known for peroxidase Compounds I and II. The findings reinforce prior work typecasting TAML activators as faithful peroxidase mimics.  相似文献   

11.
Addition of the Lewis acid Zn(2+) to (TBP(8)Cz)Mn(V)(O) induces valence tautomerization, resulting in the formation of [(TBP(8)Cz(+?))Mn(IV)(O)-Zn(2+)]. This new species was characterized by UV-vis, EPR, the Evans method, and (1)H NMR and supported by DFT calculations. Removal of Zn(2+) quantitatively restores the starting material. Electron-transfer and hydrogen-atom-transfer reactions are strongly influenced by the presence of Zn(2+).  相似文献   

12.
The recent development of structural and functional analogues of the DMSO reductase family of isoenzymes allows mechanistic examination of the minimal oxygen atom transfer paradigm M(IV) + QO M(VI) O + Q with the biological metals M = Mo and W. Systematic variation of the electronic environment at the WIV center of desoxo bis(dithiolene) complexes is enabled by introduction of para-substituted phenyl groups in the equatorial (eq) dithiolene ligand and the axial (ax) phenolate ligand. The compounds [W(CO)2(S2C2(C6H4-p-X)2)2] (54-60%) have been prepared by ligand transfer from [Ni(S2C2(C6H4-p-X)2)2] to [W(CO)3(MeCN)3]. A series of 25 complexes [W(IV)(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- ([X4,X'], X = Br, F, H, Me, OMe; X' = CN, Br, H, Me, NH2; 41-53%) has been obtained by ligand substitution of five dicarbonyl complexes with five phenolate ligands. Linear free energy relationships between E1/2 and Hammett constant p for the electron-transfer series [Ni(S2C2(C6H4-p-X)2)2]0,1-,2- and [W(CO)2(S2C2(C6H4-p-X)2)2]0,1-,2- demonstrate a substituent influence on electron density distribution at the metal center. The reactions [WIV(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- + (CH2)4SO [W(VI)O(OC6H4-p-X')(S2C2(C6H4-p-X)2)2]1- + (CH2)4S with constant substrate are second order with large negative activation entropies indicative of an associative transition state. Rate constants at 298 K adhere to the Hammett equations log(k([X4,X']/k[X4,H]) = rho(ax)sigma(p) and log(k[X4,X']/k([H4,X']) = 4rho(eq)sigma(p). Electron-withdrawing groups (EWG) and electron-donating groups (EDG) have opposite effects on the rate such that k(EWG) > k(EDG). The effects of X' on reactivity are found to be approximately 5 times greater than that of X (rho(ax) = 2.1, rho(eq) = 0.44) in the Hammett equation. Using these and other findings, a stepwise oxo transfer reaction pathway is proposed in which an early transition state, of primary W(IV)-O(substrate) bond-making character, is rate-limiting. This is followed by a six-coordinate substrate complex and a second transition state proposed to involve atom and electron transfer leading to the development of the W(VI)=O group. This work is the most detailed mechanistic investigation of oxo transfer mediated by a biological metal.  相似文献   

13.
Metal‐superoxo species are involved in a variety of enzymatic oxidation reactions, and multi‐electron oxidation of substrates is frequently observed in those enzymatic reactions. A CrIII‐superoxo complex, [CrIII(O2)(TMC)(Cl)]+ ( 1 ; TMC=1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane), is described that acts as a novel three‐electron oxidant in the oxidation of dihydronicotinamide adenine dinucleotide (NADH) analogues. In the reactions of 1 with NADH analogues, a CrIV‐oxo complex, [CrIV(O)(TMC)(Cl)]+ ( 2 ), is formed by a heterolytic O−O bond cleavage of a putative CrII‐hydroperoxo complex, [CrII(OOH)(TMC)(Cl)], which is generated by hydride transfer from NADH analogues to 1 . The comparison of the reactivity of NADH analogues with 1 and p ‐chloranil (Cl4Q) indicates that oxidation of NADH analogues by 1 proceeds by proton‐coupled electron transfer with a very large tunneling effect (for example, with a kinetic isotope effect of 470 at 233 K), followed by rapid electron transfer.  相似文献   

14.
Clarifying the difference in redox reactivity between the metal oxo and metal hydroxo moieties for the same redox active metal ion in identical structures and oxidation states, that is, M(n+)O and M(n+)-OH, contributes to the understanding of nature's choice between them (M(n+)O or M(n+)-OH) as key active intermediates in redox enzymes and electron transfer enzymes, and provides a basis for the design of synthetic oxidation catalysts. The newly synthesized manganese(IV) complex having two hydroxide ligands, [Mn(Me(2)EBC)(2)(OH)(2)](PF(6))(2), serves as the prototypic example to address this issue, by investigating the difference in the hydrogen abstracting abilities of the Mn(IV)O and Mn(IV)-OH functional groups. Independent thermodynamic evaluations of the O-H bond dissociation energies (BDE(OH)) for the corresponding reduction products, Mn(III)-OH and Mn(III)-OH(2), reveal very similar oxidizing power for Mn(IV)O and Mn(IV)-OH (83 vs 84.3 kcal/mol). Experimental tests showed that hydrogen abstraction proceeds at reasonable rates for substrates having BDE(CH) values less than 82 kcal/mol. That is, no detectable reaction occurred with diphenyl methane (BDE(CH) = 82 kcal/mol) for both manganese(IV) species. However, kinetic measurements for hydrogen abstraction showed that at pH 13.4, the dominant species Mn(Me(2)EBC)(2)(O)(2), having only Mn(IV)O groups, reacts more than 40 times faster than the Mn(IV)-OH unit in Mn(Me(2)EBC)(2)(OH)(2)(2+), the dominant reactant at pH 4.0. The activation parameters for hydrogen abstraction from 9,10-dihydroanthracene were determined for both manganese(IV) moieties: over the temperature range 288-318 K for Mn(IV)(OH)(2)(2+), DeltaH(double dagger) = 13.1 +/- 0.7 kcal/mol, and DeltaS(double dagger) = -35.0 +/- 2.2 cal K(-1) mol(-1); and the temperature range 288-308 K for for Mn(IV)(O)(2), DeltaH(double dagger) = 12.1 +/- 1.8 kcal/mol, and DeltaS(double dagger) = -30.3 +/- 5.9 cal K(-1) mol(-1).  相似文献   

15.
The discovery of tungsten enzymes and molybdenum/tungsten isoenzymes, in which the mononuclear catalytic sites contain a metal chelated by one or two pterin-dithiolene cofactor ligands, has lent new significance to tungsten-dithiolene chemistry. Reaction of [W(CO)(2)(S(2)C(2)Me(2))(2)] with RO(-) affords a series of square pyramidal desoxo complexes [W(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (1) and Pr(i)() (3). Reaction of 1 and 3 with Me(3)NO gives the cis-octahedral complexes [W(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (6) and Pr(i)() (8). These W(IV,VI) complexes are considered unconstrained versions of protein-bound sites of DMSOR and TMAOR (DMSOR = dimethylsulfoxide reductase, TMAOR = trimethylamine N-oxide reductase) members of the title enzyme family. The structure of 6 and the catalytic center of one DMSO reductase isoenzyme have similar overall stereochemistry and comparable bond lengths. The minimal oxo transfer reaction paradigm thought to apply to enzymes, W(IV) + XO --> W(VI)O + X, has been investigated. Direct oxo transfer was demonstrated by isotope transfer from Ph(2)Se(18)O. Complex 1 reacts cleanly and completely with various substrates XO to afford 6 and product X in second-order reactions with associative transition states. The substrate reactivity order with 1 is Me(3)NO > Ph(3)AsO > pyO (pyridine N-oxide) > R(2)SO > Ph(3)PO. For reaction of 3 with Me(3)NO, k(2) = 0.93 M(-)(1) s(-)(1), and for 1 with Me(2)SO, k(2) = 3.9 x 10(-)(5) M(-)(1) s(-)(1); other rate constants and activation parameters are reported. These results demonstrate that bis(dithiolene)W(IV) complexes are competent to reduce both N-oxides and S-oxides; DMSORs reduce both substrate types, but TMAORs are reported to reduce only N-oxides. Comparison of k(cat)/K(M) data for isoenzymes and k(2) values for isostructural analogue complexes reveals that catalytic and stoichiometric oxo transfer, respectively, from substrate to metal is faster with tungsten and from metal to substrate is faster with molybdenum. These results constitute a kinetic metal effect in direct oxo transfer reactions for analogue complexes and for isoenzymes provided the catalytic sites are isostructural. The nature of the transition state in oxo transfer reactions of analogues is tentatively considered. This research presents the first kinetics study of substrate reduction via oxo transfer mediated by bis(dithiolene)tungsten complexes.  相似文献   

16.
Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.  相似文献   

17.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

18.
Non-heme iron and manganese species with terminal oxo ligands are proposed to be key intermediates in a variety of biological and synthetic systems; however, the stabilization of these types of complexes has proven difficult because of the tendency to form oxo-bridged complexes. Described herein are the design, isolation, and properties for a series of mononuclear Fe(III) and Mn(III) complexes with terminal oxo or hydroxo ligands. Isolation of the complexes was facilitated by the tripodal ligand tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H(3)1](3-)), which creates a protective hydrogen bond cavity around the M(III)-O(H) units (M(III) = Fe and Mn). The M(III)-O(H) complexes are prepared by the activation of dioxygen and deprotonation of water. In addition, the M(III)-O(H) complexes can be synthesized using oxygen atom transfer reagents such as N-oxides and hydroxylamines. The [Fe(III)H(3)1(O)](2-) complex also can be made using sulfoxides. These findings support the proposal of a high valent M(IV)-oxo species as an intermediate during dioxygen cleavage. Isotopic labeling studies show that oxo ligands in the [M(III)H(3)1(O)](2-) complexes come directly from the cleavage of dioxygen: for [Fe(III)H(3)1(O)](2-) the nu(Fe-(16)O) = 671 cm(-1), which shifts 26 cm(-1) in [Fe(III)H(3)1((18)O)](2-) (nu(Fe-(18)O) = 645 cm(-1)); a nu(Mn-(16)O) = 700 cm(-1) was observed for [Mn(III)H(3)1((16)O)](2-), which shifts to 672 cm(-1) in the Mn-(18)O isotopomer. X-ray diffraction studies show that the Fe-O distance is 1.813(3) A in [Fe(III)H(3)1(O)](2-), while a longer bond is found in [Fe(III)H(3)1(OH)](-) (Fe-O at 1.926(2) A); a similar trend was found for the Mn(III)-O(H) complexes, where a Mn-O distance of 1.771(5) A is observed for [Mn(III)H(3)1(O)](2-) and 1.873(2) A for [Mn(III)H(3)1(OH)](-). Strong intramolecular hydrogen bonds between the urea NH groups of [H(3)1](3-) and the oxo and oxygen of the hydroxo ligand are observed in all the complexes. These findings, along with density functional theory calculations, indicate that a single sigma-bond exists between the M(III) centers and the oxo ligands, and additional interactions to the oxo ligands arise from intramolecular H-bonds, which illustrates that noncovalent interactions may replace pi-bonds in stabilizing oxometal complexes.  相似文献   

19.
Analogue reaction systems of selenate reductase, which reduces substrate in the overall enzymatic reaction SeO4(2-) + 2H+ + 2e- --> SeO3(2-) + H2O, have been developed using bis(dithiolene) complexes of Mo(IV) and W(IV). On the basis of the results of EXAFS analysis of the oxidized and reduced enzyme, the minimal reaction Mo(IV)OH + SeO4(2-) --> Mo(VI)O(OH) + SeO3(2-) is probable. The square pyramidal complexes [M(OMe)(S2C2Me2)2](1-) (M = Mo, W) were prepared as structural analogues of the reduced enzyme site. The systems, [ML(S2C2Me2)2](1-)/SeO4(2-) (L = OMe, OPh, SC6H2-2,4,6-Pr(i)3) in acetonitrile, cleanly reduce selenate to selenite in second-order reactions whose negative entropies of activation implicate associative transition states. Rate constants at 298 K are in the 10(-2)-10(-4) M(-1) s(-1) range with DeltaS++ = -12 to -34 eu. When rate constants are compared with previous data for the reduction of (CH2)4SO, Ph3AsO, and nitrate by oxygen atom transfer, reactivity trends dependent on the metal, axial ligand L, and substrate are identified. As in all other cases of substrate reduction by oxo transfer, the kinetic metal effect k(2)W > k(2)Mo holds. A proposal from primary sequence alignments suggesting that a conserved Asp residue is a likely ligand in the type II enzymes in the DMSO reductase family has been pursued by synthesis of the [Mo(IV)(O2CR)(S2C2Me2)2](1-) (R = Ph, Bu(t)) complexes. The species display symmetrical eta2-carboxylate binding and distorted trigonal prismatic stereochemistry. They serve as possible structural analogues of the reduced sites of nitrate, selenate, and perchlorate reductases under the proposed aspartate coordination. Carboxylate binding has been crystallographically demonstrated for one nitrate reductase, but not for the other two enzymes.  相似文献   

20.
The metalation of substituted N,N'-di-tert-butylethylenediamines by various aluminum hydride sources has been investigated. HN(t-Bu)CH(t-Bu)CH(2)N(H)(t-Bu) forms a dimeric lithium chelated adduct of LiAlH(4), [{[HN(t-Bu)CH(t-Bu)CH(2)N(H)(t-Bu)]Li(&mgr;-H)(2)AlH(2)}(2)], 4, which thermally decomposes to yield the tetrameric lithium diamidoaluminum hydride [{Li[N(t-Bu)CH(t-Bu)CH(2)N(t-Bu)]AlH(2)}(4)], 5. The same diamine reacts with AlH(3).NMe(3) or AlH(3) diethyl etherate to give the secondary amine stabilized amidoaluminum hydride species [{HN(t-Bu)CH(t-Bu)CH(2)N(t-Bu)}AlH(2)], 2. Similarly, the same aluminum hydride sources react with the diamine rac-HN(t-Bu)CH(Me)CH(Me)N(H)(t-Bu) to yield [{rac-HN(t-Bu)CH(Me)CH(Me)N(t-Bu)}AlH(2)], 3. Compounds 2 and 3 are stable with respect to elimination of hydrogen to form diamidoaluminum hydrides, but can be converted to the alane rich species, [H(2)Al{N(t-Bu)CH(t-Bu)CH(2)N(t-Bu)}AlH(2)],6, and [H(2)Al{rac-N(t-Bu)CH(Me)CH(Me)N(t-Bu)}AlH(2)], 7, by reaction with AlH(3).NMe(3) under special conditions. The varying reactivity of the three aluminum hydride sources in these reactions has enabled mechanistic information to be gathered, and the effect of the different steric requirements in the diamines on the stability of the complexes is discussed. Crystals of 3are monoclinic, space group P2(1)/n (No. 14), with a = 8.910(4), b = 14.809(1), and c = 12.239(6) ?, beta = 109.76(2) degrees, V = 1520(1) ?(3), and Z = 4. Crystals of 4 are orthorhombic, space group Pbca (No. 61), with a = 15.906(9), b = 24.651(7), and c = 9.933(7) ?, V = 3895(3) ?(3), and Z = 4. Crystals of 6 are monoclinic, space group P2(1)/c (No. 14), with a = 8.392(1), b = 17.513(2), and c = 12.959(1) ?, beta = 107.098(8) degrees, V = 1820.4(3) ?(3), and Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号