首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide, m-PDMAp-PNIPAMq, with varying degrees of polymerization (DPs) for PDMA and PNIPAM sequences (p and q) were synthesized via consecutive reversible addition-fragmentation chain transfer (RAFT) polymerizations using polytrithiocarbonate (1) as the chain transfer agent (Scheme 1), where PDMA is poly(N,N-dimethylacrylamide) and PNIPAM is poly(N-isopropylacrylamide). The DPs of PDMA and PNIPAM sequences were determined by 1H NMR, and the block numbers, i.e., number of PDMAp-PNIPAMq sequences (n), were obtained by comparing the molecular weights of multiblock copolymers to that of cleaved products as determined by gel permeation chromatography (GPC). m-PDMA42-PNIPAM37 and m-PDMA105-PNIPAM106 multiblock copolymers possess number-average molecular weights (Mn) of 4.62x10(4) and 9.53x10(4), respectively, and the polydispersities (Mw/Mn) are typically around 1.5. Block numbers of the obtained multiblock copolymers are ca. 4, which are considerably lower than the numbers of trithiocarbonate moieties per chain of 1 (approximately 20) and m-PDMAp precursors (approximately 6-7). PDMA homopolymer is water soluble to 100 degrees C, while PNIPAM has been well known to exhibit a lower critical solution temperature (LCST) at ca. 32 degrees C. In aqueous solution, m-PDMA42-PNIPAM37 and m-PDMA105-PNIPAM106 multiblock copolymers molecularly dissolve at room temperature, and their thermo-induced collapse and aggregation properties were characterized in detail by a combination of optical transmittance, fluorescence probe measurements, laser light scattering (LLS), and micro-differential scanning calorimetry (micro-DSC). It was found that chain lengths of PDMA and PNIPAM sequences exert dramatic effects on their aggregation behavior. m-PDMA105-PNIPAM106 multiblock copolymer behaves as protein-like polymers and exhibits intramolecular collapse upon heating, forming unimolecular flower-like micelles above the thermal phase transition temperature. On the other hand, m-PDMA42-PNIPAM37 multiblock copolymer exhibits collapse and intermolecular aggregation, forming associated multimolecular micelles at elevated temperatures. The intriguing aggregation behavior of this novel type of double hydrophilic multiblock copolymers argues well for their potential applications in many fields such as biomaterials and biomedicines.  相似文献   

2.
The synthesis and spectroscopic characterization of a new family of amphiphilic multiblock and triblock copolymers is described. The synthetic methodology rests on the preparation of telechelic multifunctional and difunctional chain transfer agents easily available in two synthetic steps from commercially available polydimethylsiloxane‐containing starting materials. Telechelic polymers thus synthesized are used as macromolecular chain transfer agents in the reversible addition fragmentation chain transfer (RAFT) polymerization of N,N‐dimethylacrylamide (DMA) enabling the synthesis of (AB)n‐type multiblock and ABA‐type triblock copolymers of varying compositions possessing monomodal molecular weight distribution. (AB)n multiblock copolymers [(PDMA‐b‐PDMS)n] were prepared with between 52 and 95 wt % poly(dimethylacrylamide) with number average molecular weights (Mn) between 14,000 and 86,000 (polydispersities of 1.20–2.30). On the other hand, ABA block copolymers with DMA led to amphiphilic block copolymers (PDMA‐b‐PDMS‐b‐PDMA) with Mn values between 9000 and 44,000 (polydispersities of 1.24–1.62). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7033–7048, 2008  相似文献   

3.
Block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic biodegradable polyesters have been reported as thermogelling polymers, because they feature temperature-dependent sol-to-gel or gel-to-sol transitions in aqueous solutions. In this study, a series of thermogelling poly(ethylene glycol methyl ether)-block–poly(cyclohexylenedimethylene adipate)-block–poly(ethylene glycol methyl ether) triblock copolymers and PEG-block–poly(cyclohexylenedimethylene adipate) multiblock copolymers was synthesized by reacting hydroxyl-terminated poly(cyclohexylenedimethylene adipate) (PCA) with poly(ethylene glycol methyl ether) and PEG, respectively, using 1,6-diisocyanatohexane as the coupling agent. Two hydroxyl-terminated PCAs, i.e., poly(1,4-cyclohexylenedimethylene adipate) and poly(1,3/1,4-cyclohexylenedimethylene adipate), were synthesized by the condensation reaction of adipic acid (AA) with 1,4-cyclohexanedimethanol (CHDM) and 1,3/1,4-CHDM, respectively, and used as the hydrophobic polyester blocks of these thermogelling copolymers to compare the effect of crystallinity on the sol-to-gel transition behavior.The polymers were characterized using proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, solubility testing, and rheological analysis. Experimental results revealed that the structure of the PCA block (crystalline vs. amorphous), the molecular weights of the hydrophobic PCA and hydrophilic PEG blocks, and the type of thermogelling polymer (triblock vs. multiblock) influenced the solubility, polymer micelle packing characteristics, maximum storage modulus, and sol-to-gel temperature of the polymers. Among all the samples at 40 wt.% aqueous solutions, triblock copolymer TB3 showed sol-to-gel temperature at 22 °C, and had the highest maximum storage modulus about 170 Pa.  相似文献   

4.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

5.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
To investigate thermogelling behavior, in this study, we prepared a methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) diblock copolymer (MPC) with varying hydrophobic poly(ε‐caprolactone) (PCL) lengths and an MPC featuring a zwitterionic sulfobetaine (MPC‐ZW) at the chain end of the PCL segment. The terminal zwitterionic sulfobetaine was stoichiometrically modified to the terminal MPC diblock copolymer. The introduction of the zwitterionic end group lowered the crystallization enthalpies of the PCL block segments and increased the solubility of the diblock copolymer. The MPC and MPC‐ZW copolymers thus obtained formed translucent emulsions at room temperature when prepared as 20 wt %. When the temperature was increased above room temperature, MPC and MPC‐ZW exhibited a sol‐to‐gel phase transition. The phase transition and the gelation time of MPC and MPC‐ZW were affected by the length of the hydrophobic segments and the zwitterionic end group. Furthermore, introducing a zwitterionic end group into the PCL segment altered the onset temperature of gelation. Thus, we conclude that zwitterionic end groups introduced into PCL segments of distinct lengths could serve as key determinants in the thermogelling behavior of copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2185–2191  相似文献   

7.
The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM81 triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.  相似文献   

8.
In this article, we studied the effect of hyaluronic acid (HA) on thermogelation of poly(caprolactone‐b‐ethylene glycol‐b‐caprolactone) (PCL‐PEG‐PCL) aqueous solution designed as an injectable system for prevention of postsurgical tissue adhesion. The PCL‐PEG‐PCL triblock copolymers were simply synthesized by ring‐opening polymerization of ε‐caprolactone (CL) in the presence of PEG as a polymeric initiator. The synthesized copolymers were confirmed by proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Possible interactions between HA and PCL‐PEG‐PCL triblock copolymers in the blend were evaluated by Fourier‐transform infrared spectroscopy (FTIR). The effect of HA on the micellization of PCL‐PEG‐PCL aqueous solution was investigated by dye solubilization method and electrophoretic lighting scattering (ELS) spectrophotometer. Also, the thermogelling behaviors of the PCL‐PEG‐PCL triblock copolymers in the presence of HA and their mechanism were investigated by test tube inverting method, 13C‐NMR, 1H‐NMR, Advanced Rheometic Expansion System (ARES), and differential scanning calorimetry (DSC). The PCL‐PEG‐PCL/HA blend aqueous solutions undergo the sol‐gel‐sol transition in response to an increase in temperature (10–60 °C) and the gelation of the PCL‐PEG‐PCL was rather accelerated by HA. Presumably, this accelerated gelation seems to arise from the attractive interactions between them and the effect of chain confinement in the micelle corona region. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3629–3637, 2008  相似文献   

9.
以三(2,6-二叔丁基-4-甲基苯氧基)镧为催化剂,1,4-丁二醇为引发剂,ε-癸内酯(ε-DL)和L-丙交酯(L-LA)为单体进行开环聚合,采用"一锅两步法"合成了3种不同比例的三嵌段聚合物(PLLA-PDL-PLLA).以L-赖氨酸二异氰酸酯(LDI)为扩链剂,将PLLA-PDL-PLLA和生物相容性好的聚乙二醇6000(PEG6000)用LDI进行偶联,制备了两亲性多嵌段聚合物(PLLA-PDL-PLLA-PEG)m.多嵌段聚合物(PLLA-PDL-PLLAPEG)m的断裂伸长率高达1200%,是一种拉伸性能较好的热塑性弹性体.由于PEG6000的亲水性,使两亲性多嵌段聚合物可以自组装形成具有较低临界胶束浓度的胶束,有望应用于生物医药领域.  相似文献   

10.
You YZ  Zhou QH  Manickam DS  Wan L  Mao GZ  Oupický D 《Macromolecules》2007,40(24):8617-8624
We report synthesis of temperature- and redox-responsive multiblock copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Well-defined α,ω-bis(dithioester)-functionalized poly(N-isopropylacrylamide) (PNIPAM) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) were prepared using 1,4-bis(thiobenzoylthiomethyl)benzene and 1,4-bis(2-(thiobenzoylthio)prop-2-yl)benzene as RAFT agents, respectively. Dually responsive multiblock copolymers were synthesized in a single aminolysis/oxidation step from the α,ω-bis(dithioester)-terminated PNIPAM and PDMAEMA. The copolymers and their stimulus-responsive behavior were characterized by size exclusion chromatography, NMR, light scattering and atomic force microscopy. Due to the presence of redox-sensitive disulfide bonds between the blocks, the copolymers were readily reduced to the starting polymer blocks. The presence of temperature-responsive PNIPAM blocks provided the copolymers with the ability to assemble into core-shell nanostructures with hydrophobic PNIPAM as a core and cationic PDMAEMA as stabilizing shell when above the phase transition temperatures of PNIPAM. The temperature-induced assembly of the copolymers also showed substantial pH sensitivity. The phase transition temperature increased with decreasing pH, while molecular weight of the assemblies decreased.  相似文献   

11.
An (AB)n-type multiblock copolymer containing alternating poly(l-lactide) (PLLA) and poly(dimethyl siloxane) (PDMS) segments was synthesized by chain extension of hydroxyltelechelic PLLA-PDMS-PLLA triblock copolymers, which were prepared by the ring-opening polymerization of l-lactide initiated by α,ω-functionalized hydroxyl poly(dimethyl siloxane), using 1,6-hexamethylene diisocyanate as a chain extender. The triblock and the multiblock copolymers were characterized by FT-IR, 1H NMR and GPC. From the results of thermal analysis, two glass transition temperatures which were measured by DSC showed the occurrence of phase separation phenomena in the triblock and multiblock copolymers because of the difference of solubility parameters between PLLA and PDMS segments. The effect of the chemical composition of the triblock copolymers, including the Mw and the constitutive segment chain length of the macrodiol, on the development of the Mw of the multiblock was discussed based on diffusion effect. Furthermore, the consumption of the isocyanate groups was determined by FT-IR to investigate the dependence of the reaction kinetics of the urethane formation on the chemical composition of the triblock copolymer. The results reveal that the order of the chain extension reaction depended on the Mw of the triblock copolymer: a second order reaction was transformed into a third reaction as the Mw of the triblock copolymer increased from 7000 to 25,000 (g/mol) perhaps because of the inhibition of the formation of an active complex involved in the catalyzed-urethane reaction by the polymer chain aggregation. Finally, the mechanical properties of the multiblock copolymers demonstrated that the introduction of the extremely flexible PDMS segment substantially improved the elongation at breakage, and the tensile strength and the tensile modulus declined due to the intrinsic elasticity of such segments.  相似文献   

12.
Biodegradable and nontoxic alternating multiblock copolymers based on poly (p-dioxanone) (PPDO) and poly (ethylene glycol) (PEG) were synthesized by the coupling reaction of two bifunctional prepolymers, a dihydroxyl-terminated PPDO and dicarboxylated PEG. The prepolymers and the resulting PPDO/PEG multiblock copolymers were characterized by various analytical techniques such as FT-IR, 1H NMR, GPC, DSC and TG. At high concentration levels above critical gelation concentration (CGC), the aqueous solution of copolymers formed a gel. Temperature-sensitive gel to sol transition behaviors were investigated by the test tube inverting method. Dynamic light scattering (DLS) was used to investigate the micelle of copolymers, whose association probably caused the gelation of the system. Therefore, this novel copolymer has a great potential in injectable drug-delivery system for long-term delivery of drugs.  相似文献   

13.
Stimuli‐responsive ABC triblock copolymers with three segments with different phase‐separation temperatures were synthesized via sequential living cationic copolymerization. The triblock copolymers exhibited sensitive thermally induced physical gelation (open association) through the formation of micelles. For example, an aqueous solution of EOVE200b‐MOVE200b‐EOEOVE200 [where EOVE is 2‐ethoxyethyl vinyl ether, MOVE is 2‐methoxethyl vinyl ether and EOEOVE is 2‐(2‐ethoxy)ethoxyethyl vinyl ether; the order of the phase‐separation temperatures was poly(EOVE) (20 °C) < poly(EOEOVE) (41 °C) < poly(MOVE) (70 °C)] underwent multiple reversible transitions from sol (<20 °C) to micellization (20–41 °C) to physical gelation (physical crosslinking, 41–64 °C) and, finally, to precipitation (>64 °C). At 41–64 °C, the physical gel became stiffer than similar diblock or ABA triblock copolymers of the same molecular weight. Furthermore, the ABC triblock copolymers exhibited Weissenberg effects in semidilute aqueous solutions. In sharp contrast, another ABC triblock copolymer with a different arrangement, EOVE200b‐EOEOVE200b‐MOVE200, scarcely exhibited any increase in viscosity above 41 °C. The temperatures of micelle formation and physical gelation corresponded to the phase‐separation temperatures of the segment types in the ABC triblock copolymer. No second‐stage association was observed for AB and ABA block copolymers with the same thermosensitive segments found in their ABC counterparts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2601–2611, 2004  相似文献   

14.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

15.
The micellar properties and solubilization capacity of poorly water soluble drugs of several micellar and gel solutions of diblock and triblock copolymers of styrene oxide/ethylene oxide have been measured and compared with block copolymers of butylene oxide/ethylene oxide, showing that the solubilization capacity of the styrene oxide block is approximately four times that of a butylenes oxide block for dilute solutions. To continue establishing the correlation between micellar characteristics and solubilization capacity, we have found it interesting to compare the micellar and gelation properties of the diblock and triblock copolymers PSO10PEO135 and PEO69PSO8PEO69 (subindexes are the number-average block lengths), with different architecture but similar average block lengths. Surface tension measurements allowed the determination of the critical micelle concentrations at several temperatures and, so, to calculate standard enthalpies of micellization. Static and dynamic light scattering data permitted us to determine micellar parameters and to obtain qualitatively the extent of hydration of the copolymer micelle. A tube inversion method was used to define the mobile-immobile (soft-hard gel) phase boundary. To refine the phase diagram and observe the existence of additional phases, rheological measurements were done. The results are in good agreement with previous values published for PSOnPEOm and PEOmPSOnPEOm copolymers.  相似文献   

16.
The gelation behavior of aqueous solutions of poly(ethylene oxide-b-(DL-lactic acid-co-glycolic acid)-b-ethylene oxide) (PEO-PLGA-PEO) triblock copolymer containing short hydrophilic PEO end blocks is investigated using dynamic light scattering, rheology, small-angle neutron scattering (SANS), and differential scanning calorimetry (DSC). For polymer concentrations between 5 and 35 wt %, four distinct regions of the turbidity change depending on temperature were observed. Interestingly, in the turbid solution region, gel phase is formed for polymer concentrations above 14 wt % and an extremely slow relaxation was detected. In fact, a power law, which takes into account the dynamics of percolation clusters, dominates the correlation function. In rheological measurements, the local maximum in G' is observed at around the temperature of maximum turbidity. We further found that G" > G' and G' is highly dependent on frequency at the gel state implying viscoelastic characteristics, which is quite different from general concepts of gels, typically formed by the micellar packing. SANS profiles showing multiple peaks in the sol state rather than in the gel state as well as a DSC exotherm at the temperature of gels can also serve as the evidence of different gel states. Based upon the experimental data obtained in the present study, a new gelation mechanism induced by the macroscopic phase separation of triblock copolymers containing short hydrophilic PEO end blocks such as PEO-PLGA-PEO is proposed. The effect of the type ofhydrophobic middle blocks on the gelation is also discussed.  相似文献   

17.
The aim of this study was to investigate the effect of the asymmetry of the triblock copolymers on their thermoresponsive self‐assembly behavior. To this end, nine ABA‐type triblock copolymers with n‐butyl methacrylate and 2‐(dimethylamino)ethyl methacrylate (DMAEMA) consisting of the A and the B blocks, respectively, were synthesized. Polymers of three different DMAEMA contents (50, 60, and 70 wt %) were synthesized while varying the length ratio of the two hydrophobic A blocks. Specifically, one symmetric ABA triblock copolymer and two asymmetric ABA′ triblock copolymers with the length of the second A block to be twice or four times bigger than the length of the first A block (AB2A and AB4A triblock copolymer) were synthesized for each DMAEMA composition. Three statistical copolymers were also synthesized for comparison. The thermoresponsive behavior of the copolymers was studied and it was found that the cloud point and rheological properties of the polymers were strongly affected by the architecture (statistical vs. block) and less strongly by the DMAEMA composition and the asymmetry of the polymers. Nevertheless, interestingly the asymmetry of the ABA triblock copolymers did influence the thermoresponsive behavior with the more symmetric polymers presenting a sol–gel transition at lower temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2850–2859.  相似文献   

18.
To develop new types of biodegradable polymers possessing predictable responses to changes in temperature, ABA‐type and BAB‐type triblock copolymers composed of various polydepsipeptides (PDP) and poly(ethylene glycol) (PEG) (PDP‐PEG‐PDP and PEG‐PDP‐PEG) were synthesized. The specific focus of this study was on the effect of the different side‐chain groups of various amino acids on the temperature‐responsive behavior of the triblock copolymers. An ABA‐type triblock copolymer containing the less hydrophobic glycine (PGG‐PEG‐PGG) did not exhibit any temperature‐responsive behavior; however, ABA‐type triblock copolymers containing the hydrophobic α‐amino acids, L ‐leucine and L ‐phenylalanine (PGL‐PEG‐PGL or PGF‐PEG‐PGF), did exhibit temperature‐responsive behavior. The cloud point of PGF‐PEG‐PGF was 10 °C lower than that of PGL‐PEG‐PGL. It can be possible to control temperature‐sensitivity by changing not only PDP segment length but also kind of α‐amino acid in PDP segment. Moreover, BAB‐type triblock copolymer containing L ‐leucine (PEG‐PGL‐PEG) showed temperature‐responsive sol‐gel transition. Because polydepsipeptides are biodegradable polymers, the information obtained in this study is useful to design biodegradable injectable polymers having controllable temperature‐sensitivity for biomedical use.© 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3892–3903, 2009  相似文献   

19.
A series of fluoroalkyl end-capped diblock copolymers of poly[2-(N,N-dimethylamino)ethyl methacrylate] (PDMAEMA or PDMA) and poly[2-(N,N-diethylamino)ethyl methacrylate] (PDEAEMA or PDEA) have been synthesized via oxyanion-initiated polymerization, in which a potassium alcoholate of 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptanol (NFHOK) was used as an initiator. The chemical structures of the NFHO-PDMA-b-PDEA and NFHO-PDEA-b-PDMA depended on the addition sequence of the two monomers and the feeding molar ratios of [DMA] to [DEA] during the polymerization process. These copolymers have been characterized by (1)H NMR and (19)F NMR spectroscopy and gel permeation chromatography (GPC). The aggregation behavior of these copolymers in aqueous solutions at different pH media was studied using a combination of surface tension, fluorescence probe, and transmission electron microscopy (TEM). Both diblock copolymers exhibited distinct pH/temperature-responsive properties. The critical aggregation concentrations (cacs) of these copolymers have been investigated, and the results showed that these copolymers possess excellent surface activity. Besides, these fluoroalkyl end-capped diblock copolymers showed pH-induced lower critical solution temperatures (LCSTs) in water. TEM analysis indicated that the NFHO-PDMA(30)-b-PDEA(10) diblock copolymers can self-assemble into the multicompartment micelles in aqueous solutions under basic conditions, in which the pH value is higher than the pKa values of both PDMA and PDEA homopolymers, while the NFHO-PDEA(10)-b-PDMA(30) diblock copolymers can form flowerlike micelles in basic aqueous solution.  相似文献   

20.
谢洪泉 《高分子通报》1999,(4):17-24,33
论述了由聚烯链段与聚苯乙烯或聚(甲基)丙烯酸酯链段组成的各种嵌段或接枝共聚物(包括二嵌段、两种三嵌段、星型嵌段、多嵌段、二种规整接枝共聚物等)的分子设计及合成,并总结了其两亲性质、络合碱金属离子性及微观相分离等特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号