首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long‐term stability, reliability, cost‐efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature.  相似文献   

2.
何忠禹  崔亚涵  黄宁  杨树良  陈艳华  丁兰 《色谱》2020,38(1):104-112
β-环糊精(β-CD)及其衍生物作为一种新兴的功能单体在分子印迹技术中得到了越来越多的应用。β-CD及其衍生物能够与许多分子形成主-客体包合物,基于这一包合作用制备的分子印迹聚合物具有稳定性好和选择性高等优点,因此在具有复杂基质的环境和食品样品中目标化合物的选择性分离和富集中得到了重视和发展。该综述主要回顾了2013年以来文献中报道的一些基于β-CD及其衍生物作为功能单体的分子印迹聚合物在环境水和食品样品前处理方面的最新应用,揭示这一分子印迹聚合物在复杂样品前处理中的优势。  相似文献   

3.
分子印迹技术研究进展   总被引:8,自引:0,他引:8  
分子印迹是制备具有分子特异识别功能聚合物的一种技术。本文从分子印迹聚合物的识别机理、分子印迹聚合制备条件和制备技术三个方面综述了分子印迹的研究进展,最后展望了分子印迹发展前景。引用文献66篇。  相似文献   

4.
We describe a stoichiometric approach to the synthesis of molecularly imprinted polymers specific for auramine O. Using the stoichiometric interaction in molecular imprinting, no excess of binding sites is necessary and binding sites are only located inside the imprinted cavities. The free base of the template was obtained to facilitate the interaction with the monomers. Itaconic acid was selected as the functional monomer, and stoichiometric ratio of the interaction with the free base was investigated. The molecularly imprinted polymer preparation conditions such as cross‐linker, molar ratio, porogen were optimized as divinylbenzene, 1:2:20 and chloroform/N,N‐dimethylformamide, respectively. Under the optimum conditions, a good imprinting effect and very high selectivity were achieved. A solid‐phase extraction method was developed using the molecularly imprinted polymers as a sorbent and extraction procedure was optimized. The solid‐phase extraction method showed a high extraction recovery for auramine O in its hydrochloride form and free form compared to its analogues. The results strongly indicated that stoichiometric imprinting is an efficient method for development of high selectivity molecularly imprinted polymers for auramine O.  相似文献   

5.
This review documents recent advances in the design, synthesis, characterization, and application of molecularly imprinted polymers in the form of monoliths and particles/beads for the use in the separation and analysis of proteins with solid‐phase extraction or liquid chromatography. The merits of three‐dimensional molecular imprinting, whereby the molecular template is randomly embedded in the polymer, and two‐dimensional imprinting, in which the template is confined to the surface, are described. Target protein binding can be achieved by either using the entire protein as a template or by using a protein substructure as template, that is, a peptide, as in the "epitope" approach. The intended approach and strategy then determine the choice of polymerization method. A synopsis has been provided on methods used for the physical, chemical, and functional characterizations and associated performance evaluations of molecularly imprinted and nonimprinted control polymers, involving a diverse range of analytical techniques commonly used for low and high molecular mass analytes. Examples of recent applications demonstrate that, due to the versatility of imprinting methods, molecularly imprinted monoliths or particles/beads can be adapted to protein extraction/depletion and separation procedures relevant to, for example, protein biomarker detection and quantification in biomedical diagnostics and targeted proteomics.  相似文献   

6.
水相识别分子印迹技术   总被引:1,自引:0,他引:1  
在各种基于超分子方法的仿生识别体系中,分子印迹聚合物已经证明是一种有潜力的合成受体,受到了广泛的关注。传统的分子印迹技术通常是在有机溶剂中制备对小分子具有选择性的印迹聚合物,而在水相中制备及识别生物大分子的研究仍具有相当的挑战性。从小分子到生物大分子、从有机相到水相,反映了分子印迹技术的发展趋势。本文对最近几年分子印迹在水相制备与识别方面的最新进展进行了总结与评述,探讨了水相识别印迹聚合物的设计策略与制备方法;着重介绍了水相识别技术在固相萃取、色谱固定相、药物控释、中药有效成份提取以及生物分子识别等方面的应用;指出了提高水相识别选择性的途径并对其将来的发展进行了建议与展望。  相似文献   

7.
分子印迹技术在样品前处理中的应用   总被引:18,自引:2,他引:18  
胡小刚  李攻科 《分析化学》2006,34(7):1035-1041
分子印迹聚合物具有选择性高、稳定性好及制备简单的特点,可用于生物、医药、环境样品等复杂基体中痕量分析物的高选择性分离与富集,因此在样品前处理中的应用特别引人关注.本文介绍了分子印迹技术的基本原理,综述了分子印迹技术在样品前处理中应用的研究进展.  相似文献   

8.
夏烈文  褚良银 《化学通报》2007,70(7):489-493
温敏型分子印迹技术是近几年来分子印迹技术新的发展。温敏型分子印迹聚合物以低交联度为特征,对模板分子的吸附容量和选择性随温度变化而改变。本文总结并评述了基于N-异丙基丙烯酰胺的温敏型MIP分子印迹聚合物及其制备方法,指出了温敏型分子印迹技术发展中需要解决的问题。  相似文献   

9.
分子烙印传感器的研究进展   总被引:12,自引:5,他引:7  
刘勤  周永新  刘荫棠 《分析化学》1999,27(11):1341-1347
分子烙印技术是制备具有选择性分子识别能力的聚合物的新兴技术,其应用之一是将分子烙印聚合物用作分析化学中化学传感器的识别元件。本文综述了分子烙印技术的原理方法及其在传感器方面的应用,评述了分子烙印传感器的发展方向,展望了其在有机磷化合物检测中的应用前景。  相似文献   

10.
A catalyst surface with an active metal site, a shape-selective reaction space, and an NH(2) binding site for o-fluorobenzophenone was designed and prepared by the molecular imprinting of a supported metal complex on a SiO(2) surface. A ligand of a SiO(2)-supported Ru complex that has a similar shape to the product of o-fluorobenzophenone hydrogenation was used as a template. An NH(2) binding site for o-fluorobenzophenone was spatially arranged on the wall of a molecularly imprinted cavity with a similar shape to the template. The structures of the SiO(2)-supported and molecularly imprinted Ru catalysts were characterized in a step-by-step manner by means of solid-state magic angle spinning (MAS) NMR, XPS, UV/Vis, N(2) adsorption, XRF, and Ru K-edge EXAFS. The molecularly imprinted Ru catalyst exhibited excellent shape selectivity for the transfer hydrogenation of benzophenone derivatives. It was found that the NH(2) binding site on the wall of the molecularly imprinted cavity enhanced the adsorption of o-fluorobenzophenone, of which the reduction product was imprinted, whereas there was no positive effect in the case of o-methylbenzophenone, which cannot interact with the NH(2) binding site through hydrogen bonding.  相似文献   

11.
表面分子印迹研究进展   总被引:3,自引:0,他引:3  
为了拓展分子印迹聚合物(Molecularly Imprinted Polymers,MIP)的应用领域,表面分子印迹作为一种新的方法,受到了极大的关注。本文首先分析了MIP传统制备方法存在的问题;然后依据印迹位点所处位置的不同,分类综述了表面分子印迹的各种方法。  相似文献   

12.
Ordered macroporous molecularly imprinted polymers were prepared by a combination of the colloidal crystal templating method and the molecular imprinting technique by using SiO2 colloidal crystal as the macroporogen, quercetin as the imprinting template, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross‐linker and tetrahydrofuran as the solvent. Scanning electron microscopy and Brunauer–Emmett–Teller measurements show that the ordered macroporous molecularly imprinted polymers have a more regular macroporous structure, a narrower pore distribution and a greater porosity compared with the traditional bulk molecularly imprinted polymers. The kinetic and isothermal adsorption behaviors of the polymers were investigated. The results indicate that the ordered macroporous molecularly imprinted polymers have a faster intraparticle mass transfer process and a higher adsorption capacity than the traditional bulk molecularly imprinted polymers. The ordered macroporous molecularly imprinted polymers were further employed as a sorbent for a solid‐phase extraction. The results show that the ordered macroporous molecularly imprinted polymers can effectively separate quercetin from the Gingko hydrolysate.  相似文献   

13.
A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid‐phase extraction. The optimal conditions for solid‐phase extraction were provided by cartridge conditioning using acidified water purified from a Milli‐Q system, sample loading under basic aqueous conditions, clean‐up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90–102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.  相似文献   

14.
Shen X  Ye L 《Macromolecules》2011,44(14):5631-5637
A new interfacial nano and molecular imprinting approach is developed to prepare spherical molecularly imprinted polymers with well-controlled hierarchical structures. This method is based on Pickering emulsion polymerization using template-modified colloidal particles. The interfacial imprinting is carried out in particle-stabilized oil-in-water emulsions, where the molecular template is presented on the surface of silica nanoparticles during the polymerization of the monomer phase. After polymerization, the template-modified silica nanoparticles are removed from the new spherical particles to leave tiny indentations decorated with molecularly imprinted sites. The imprinted microspheres prepared using the new interfacial nano and molecular imprinting have very interesting features: a well-controlled hierarchical structure composed of large pores decorated with easily accessible molecular binding sites, group selectivity toward a series of chemicals having a common structural moiety (epitopes), and a hydrophilic surface that enables the MIPs to be used under aqueous conditions.  相似文献   

15.
In this study, dummy imprinting technology was employed for the preparation of l‐ phenylalanine‐imprinted microspheres. Ionic liquids were utilized as both a “dummy” template and functional monomer, and 4‐vinylpyridine and ethylene glycol dimethacrylate were used as the assistant monomer and cross‐linker, respectively, for preparing a surface‐imprinted polymer on poly(divinylbenzene) microspheres. By the results obtained by theoretical investigation, the interaction between the template and monomer complex was improved as compared with that between the template and the traditional l‐ phenylalanine‐imprinted polymer. The batch experiments indicated that the imprinting factor reached 2.5. Scatchard analysis demonstrated that the obtained “dummy” molecularly imprinted microspheres exhibited an affinity of 77.4 M·10?4, significantly higher that of a traditional polymer directly prepared by l‐ phenylalanine, which is in agreement with theoretical results. Competitive adsorption experiments also showed that the molecularly imprinted polymer with the dummy template effectively isolated l‐ phenylalanine from l‐ histidine and l‐ tryptophan with separation factors of 5.68 and 2.68, respectively. All these results demonstrated that the polymerizable ionic liquid as the dummy template could enhance the affinity and selectivity of molecularly imprinted polymer, thereby promoting the development of imprinting technology for biomolecules.  相似文献   

16.
For the first time, the feasibility of a molecularly imprinted liquid phase deposition (LPD) thin film has been demonstrated. Thin films of titanium oxide imprinted with L-glutamic acid were prepared by the LPD method on a gold-coated quartz crystal microbalance. The imprinted molecule could be removed upon treatment with immersion in deionized water. A sensor was developed on the basis of this method and showed good sensitivity, selectivity, and reproducibility to the template molecule. An equation was deduced to characterize the interaction between molecularly imprinted films and the template by virtue of Scatchard analysis. X-ray photoelectron spectroscopy was introduced to show the evidence for the molecular imprinting phenomenon. The linear relationship between the frequency shifts and the concentration of analyte in the range of 10-200 microM was obtained. LPD proves to be a powerful method for imprinting titanium oxide thin films.  相似文献   

17.
Since its inception five decades ago, imprinted sol-gel materials went practically unnoticed, until in the 1970s the conceptual introduction of molecular imprinting in synthetic polymers triggered a new interest in this field. The recent growth in interest in organic–inorganic hybrid materials prepared by sol-gel chemistry and the development of a variety of new strategies for imprinting polymeric matrices have led to a growing activity in what became known as molecularly imprinted sol-gel materials. This paper intends to give an overview of recent progress in molecular imprinting in sol-gel matrices, the potential analytical applications of these tailor-made materials and their limitations, with the aim of drawing attention to useful information and to enhancing interest in this practically unexplored but promising field.  相似文献   

18.
A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen.  相似文献   

19.
Molecular imprinting is a template polymerization technique that can easily provide synthetic polymers capable of molecular recognition for given target molecules. In addition to their highly specific recognition ability, we are attempting to introduce signaling functions to molecularly imprinted polymers, enabling them to respond according to specific binding events. Some of our work regarding such signaling molecularly imprinted polymers is presented here, including molecularly imprinted polymers that induce spectral shifts of target compounds because of binding. Such compounds include hydrogen-bonding-based fluorescent imprinted polymers and metalloporphyrin-based signaling molecularly imprinted polymers.  相似文献   

20.
Despite the complex phenomena involved in encoding template molecule information within stable synthetic polymers to yield selective and efficient molecular recognition processes, molecularly imprinted polymers (MIP) are increasingly finding broad areas of application. Molecular interactions, both during the polymerization of the functional monomers in the presence of the template and during the processes of specific recognition after template removal, are key determinants of an effective MIP. Covalent and noncovalent template imprinting have been employed to achieve specific recognition sites. In the present study, a molecularly imprinted biocompatible polymer, having a high capacity and affinity for the dye template, nickel(II) phthalocyanine tetrasulfonic acid, has been prepared. UV-visible spectroscopy, FTIR spectroscopy, and ICP analysis were used to investigate the aspects of the synthesis, binding capacity, and adsorption kinetics of the system. Poly(allylamine) cross-linked with epichlorohydrin has been used to represent an amino-functional receptor. Binding isotherms and capacities were correlated with the degree of template removal. Kinetic studies of binding allowed diffusion mechanisms to be evaluated for the fine particulate MIP. Ab initio molecular orbital calculations were performed using Hartree-Fock, MP2, and density functional theory methods to determine the most likely mechanisms of molecular imprinting. Suitable theoretical models have been constructed to mimic the interactions between the template molecule and the polymer. Simulation of the vibrational spectra was also undertaken to make meaningful assignments to experimentally determined spectral bands resulting from these template MIP receptor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号