首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties.  相似文献   

2.
The flow behavior of bidisperse aqueous silica suspensions has been studied at different electrolyte concentrations as a function of shear rate, total volume fraction of the particles, and volume ratio of small to large particles. It is shown that the range of the electrostatic repulsion plays an important role in determining the viscosity of the suspension. Binary mixtures of particles of longer range repulsive forces showed higher viscosities than the suspensions of shorter range electrostatic interactions. Bimodal suspensions of long-range interactions showed non-Newtonian behavior over wider ranges of shear due to the deformation of the ionic cloud around the particles, which is larger in these systems. The viscosity of bimodal suspensions used in this study was scaled with respect to the viscosity of the related monosized systems and the viscosity of one bimodal suspension at a fixed total volume fraction of the particles, employing our earlier scaling method. The model normalizes the effect of colloidal forces by introducing a scaling factor that collapses the data into a single curve for bimodal suspensions of a particular size ratio, and it is shown that the model is valid for systems with both short-range and long-range repulsive forces. Copyright 1999 Academic Press.  相似文献   

3.
This review focuses on the rheological aspects of colloidal gels that are a three-dimensional sparse network made of aggregated attractive particles formed in the aqueous suspensions of microgels composed of thermoresponsive polymers. Heating changes the dominant interparticle interactions from repulsive to attractive because of the hydrophilic-to-hydrophobic transition. Under appropriate conditions, the hydrophobic microgel suspensions form colloidal gels behave as a yield fluid. The elastic and yielding features of the colloidal gels are considerably different from those of the repulsive glass which is formed by the dense packing of the hydrophilic microgels at low temperatures. The thermoresponsive microgel suspensions undergoing colloidal gelation have attracted much attention from not only the academic interests but also the potentials as a functional suspension because they show interesting and marked changes in viscoelasticity when subjected to temperature variation. We discuss the criteria and dynamics of colloidal gelation, the structure, and linear and nonlinear viscoelasticity of the colloid gels with an emphasis on the results of the experimental studies.  相似文献   

4.
We report extensive numerical simulations of a simple model for charged colloidal particles in suspension with small nonadsorbing polymers. The chosen effective one-component interaction potential is composed of a short-range attractive part complemented by a Yukawa repulsive tail. We focus on the case where the screening length is comparable to the particle radius. Under these conditions, at low temperature, particles locally cluster into quasi one-dimensional aggregates which, via a branching mechanism, form a macroscopic percolating gel structure. We discuss gel formation and contrast it with the case of longer screening lengths, for which previous studies have shown that arrest is driven by the approach to a Yukawa glass of spherical clusters. We compare our results with recent experimental work on charged colloidal suspensions (Phys. Rev. Lett. 2005, 94, 208301).  相似文献   

5.
This study introduces an electrorheological (ER) approach that allows us to obtain remarkably enhanced ER properties by using monodisperse colloidal dimer particles. Two sets of colloidal particles, which are spheres and symmetric dimers, were synthesized employing the seeded polymerization technique. The aspect ratio of dimer particles was ~1.43. Then, the surface of the particles was coated with polyaniline by using the chemically oxidative polymerization method. After preparation of the particle suspensions having the same particle volume and concentration, their ER behavior was investigated with changing the electric field strength. At the same experimental condition, both shear stress and shear yield stress of the dimer particle suspension remarkably increased, compared with those of the spherical particle suspension. This attributes to the fact that the shape anisotropy of suspending particles effectively led to increase in the dipole moment under the electric field, thus resulting in formation of a well-structured colloidal chains between the electrodes.  相似文献   

6.
This paper adopts a previously developed activation model of shear thickening, published by the authors to sterically stabilized colloidal suspensions. When particles arranged along the compression axis of a sheared suspension, they may overcome the repulsive interaction and form hydroclusters associated with shear thickening. Taking advantage of the total interaction potential of polymeric brush coating and van der Waals attraction, the applicability of the activation model is shown within the validity range of a continuum theory. For the comparison with an extensive experimental investigation, where some parameters are not available, the onset of shear thickening can be predicted with realistic assumptions of the model parameters.  相似文献   

7.
A hydrodynamic mechanism of interactions of colloidal particles is considered. The mechanism is based on the assumption of tiny background flows in the experimental cells during measurements by Grier et al. Both trivial (shear flow) and nontrivial (force propagation through viscous fluid) effects are taken into account for two colloidal particles near a wall bounding the solvent. Expressions for the radial (attractive or repulsive) forces and the polar torques are obtained. Quantitative estimates of the flow needed to produce the observed strength of attractive force are given; other necessary conditions are also considered. The following conclusion is made: the mechanism suggested most likely is not responsible for the attractive interactions observed in the experiments of Grier et al.; however, it may be applicable in other experimental realizations and should be kept in mind while conducting colloidal measurements of high sensitivity. Several distinctive features of the interactions due to this mechanism are identified.  相似文献   

8.
This work deals with the problem of deriving theoretical connections between rheology and interparticle forces in colloidal suspensions. The nature of interparticle forces determines the colloidal structure (crystalline order due to long range repulsive forces, flocculation due to attractive forces, etc.) and hence, the flow behavior of suspensions. The aim of this article is to discuss how these interactions enter the modeling of rheometric functions, in particular, the shear viscosity. In this sense, the main interactions commonly appearing in colloids are reviewed, as well as the role they play in phase transition behavior. Then, a series of approaches relating the interaction potential to viscosity is examined. The results of applying these models to experimental data are also discussed. Finally, examples of viscosity modeling for different interaction potentials are given, by using the structural model proposed previously by the authors. The possibility of relating the flow behavior of colloidal suspensions to the interaction between particles offers new perspectives for the study and technical applications of these systems.  相似文献   

9.
Crystallization behavior of soft, attractive microgels   总被引:2,自引:0,他引:2  
The equilibrium phase behavior and the dynamics of colloidal assemblies composed of soft, spherical, colloidal particles with attractive pair potentials have been studied by digital video microscopy. The particles were synthesized by precipitation copolymerization of N-isopropylacrylamide (NIPAm), acrylic acid (AAc), and N,N'-methylene bis(acrylamide) (BIS), yielding highly water swollen hydrogel microparticles (microgels) with temperature- and pH-tunable swelling properties. It is observed that in a pH = 3.0 buffer with an ionic strength of 10 mM, assemblies of pNIPAm-AAc microgels crystallize due to a delicate balance between weak attractive and soft repulsive forces. The attractive interactions are further confirmed by measurements of the crystal melting temperatures. As the temperature of colloidal crystals is increased, the crystalline phase does not melt until the temperature is far above the lower critical solution temperature (LCST) of the microgels, in stark contrast to what is typically observed for phases formed due to purely repulsive interactions. The unusual thermal stability of pNIPAm-AAc colloidal crystals demonstrates an enthalpic origin of crystallization for these microgels.  相似文献   

10.
Temperature effect on the stability of bentonite colloids in water   总被引:1,自引:0,他引:1  
The stability of natural bentonite suspensions has been investigated as a function of temperature at pH 9 and ionic strength 10(-3) M. The sedimentation rate of the particles is directly related to their stability. The sedimentation kinetics was determined by examining the variation of particle concentration in solution with time. The observed kinetics for sedimentation is discussed quantitatively in terms of the potential energy between particles. The zeta-potential of the particles was measured and the DLVO theory was used to calculate attractive and repulsive potentials. Experimental observations are consistent with DLVO model predictions and show that the stability of bentonite colloids increases with temperature. Differences with other colloidal systems can be attributed to the temperature dependence of the surface charge of bentonite particles.  相似文献   

11.
A combined experimental and multiscale simulation study of the influence of polymer brush modification on interactions of colloidal particles and rheological properties of dense colloidal suspensions has been conducted. Our colloidal suspension is comprised of polydisperse MgO colloidal particles modified with poly(ethylene oxide) (PEO) brushes in water. The shear stress as a function of shear rate was determined experimentally and from multiscale simulations for a suspension of 0.48 volume fraction colloids at room temperature for both bare and PEO-modified MgO colloids. Bare MgO particles exhibited strong shear thinning behavior and a yield stress on the order of several Pascals in both experiments and simulations. In contrast, simulations of PEO-modified colloids revealed no significant yielding or shear thinning and viscosity only a few times larger than solvent viscosity. This behavior is inconsistent with results obtained from experiments where modification of colloids with PEO brushes formed by adsorption of PEO-based comb-branched chains resulted in relatively little change in suspension rheology compared to bare colloids over the range of concentration of comb-branch additives investigated. We attribute this discrepancy in rheological properties between simulation and experiment for PEO-modified colloidal suspensions to heterogeneous adsorption of the comb-branch polymers.  相似文献   

12.
A novel soft material comprising thermosensitive poly(benzyl methacrylate)-grafted silica nanoparticles (PBnMA-g-NPs) and the ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([C(2)mim][NTf(2)]), was fabricated. The thermosensitive properties were studied over a wide range of particle concentrations and temperatures. PBnMA-g-NPs in the IL underwent the lower critical solution temperature (LCST) phase transition at lower temperatures with a broader transition temperature range as compared to the free PBnMA solution. Highly concentrated suspensions formed soft glassy colloidal arrays (SGCAs) exhibiting a soft-solid behavior and angle-independent structural color. For the first time, we report a discrete change in the angle-independent structural color of SGCAs with temperature because of a temperature-induced colloidal glass-to-gel transition. The interparticle interaction changed from repulsive to attractive at the LCST temperature, and it was characterized by a V-shaped rheological response and a direct electron microscope observation of the colloidal suspension in the IL. With unique rheological and optical properties as well as properties derived from the IL itself, the thermosensitive SGCAs may be of interest as a new material for a wide range of applications such as electrochemical devices and color displays.  相似文献   

13.
In this work, we have performed a systematic investigation of the effect of electrostatic repulsive interactions on the aggregation rate of colloidal nanoparticles to from doublets in the presence of a convective transport mechanism. The aggregation rate has been computed by solving numerically the Fuchs-Smoluchowski diffusion-convection equation. Two convective transport mechanisms have been considered: extensional flow field and gravity-induced relative sedimentation. A broad range of conditions commonly encountered in the applications of colloidal dispersions has been analyzed. The relative importance of convective to diffusive contributions has been quantified by using the Peclet number Pe. The simulation results indicate that, in the presence of repulsive interactions, the evolution of the aggregation rate as a function of Pe can always be divided into three distinct regimes, no matter which convective mechanism is considered. At low Pe values the rate of aggregation is independent of convection and is dominated by repulsive interactions. At high Pe values, the rate of aggregation is dominated by convection, and independent of repulsive interactions. At intermediate Pe values, a sharp transition between these two regimes occurs. During this transition, which occurs usually over a 10-100-fold increase in Pe values, the aggregation rate can change by several orders of magnitude. The interval of Pe values where this transition occurs depends upon the nature of the convective transport mechanism, as well as on the height and characteristic lengthscale of the repulsive barrier. A simplified model has been proposed that is capable of quantitatively accounting for the simulations results. The obtained results reveal unexpected features of the effect of ionic strength and particle size on the stability of colloidal suspensions under shear or sedimentation, which have relevant consequences in industrial applications.  相似文献   

14.
Starting from the complex shear modulus equation for a dilute suspension system, three new equations are developed for the complex shear modulus of concentrated suspensions of solid spheres. The continuous phase (matrix) and the dispersed particles are treated as viscoelastic materials in the derivation. Complex shear modulus data on suspensions of spherical glass beads in polymeric liquid were obtained experimentally and compared with the predictions of the proposed equations. The proposed equations describe the experimental data reasonably well.  相似文献   

15.
We report a numerical investigation of the viscoelastic behavior in models for steric repulsive and short-ranged attractive colloidal suspensions, along different paths in the attraction strength vs packing fraction plane. More specifically, we study the behavior of the viscosity (and its frequency dependence) on approaching the repulsive glass, the attractive glass, and in the reentrant region where viscosity shows a nonmonotonic behavior on increasing attraction strength. On approaching the glass lines, the increase of the viscosity is consistent with a power-law divergence with the same exponent and critical packing fraction previously obtained for the divergence of the density fluctuations. Based on mode-coupling calculations, we associate the increase of the viscosity with specific contributions from different length scales. We also show that the results are independent of the microscopic dynamics by comparing Newtonian and Brownian simulations for the same model. Finally, we evaluate the Stokes-Einstein relation approaching both glass transitions, finding a clear breakdown which is particularly strong for the case of the attractive glass.  相似文献   

16.
We present experimental and theoretical results on the electrorheological response and microstructure of colloidal suspensions composed of silica nanoparticles dispersed in a silicon oil, as a function of electric field strength and silica water content. Using small-angle neutrons scattering experiments, we determined the evolution of the static structure factor of the suspensions when an electric field is applied. Experimental data were fitted with model calculations using the Percus-Yevick solution for Baxter's hard-sphere adhesive potential. The obtained stickiness parameter is directly related to the polarization interactions that depend on the water content of silica particles. The influence of the polarization interparticle potential on the rheology of the silica dispersions was investigated in a second time. A microscopic theory for the shear viscosity of adhesive hard-sphere suspensions was successfully used which describes the steady shear viscosity of suspension in terms of the fractal concept.  相似文献   

17.
Monte Carlo simulations have been performed for aqueous charged colloidal suspensions as a function of effective charge density (sigma) on the particles and salt concentration C(s). We vary the effective charge density in our simulations over a range where a reentrant solid-liquid transition in suspensions of silica and polymer latex particles has been reported by Yamanaka et al. (Phys. Rev. Lett. 80 (1998) 5806). We show that at low ionic strengths a homogeneous liquid-like ordered suspension undergoes crystallization upon increasing sigma. Further increase in sigma resulted once again in a disordered state, which is in agreement with experimental observations. In addition to this reentrant order-disorder transition, we observe an inhomogeneous-to-homogeneous transition in our simulations when salt is added to the disordered inhomogeneous state. This inhomogeneous-to-homogeneous disordered transition is analogous to the solid-gas transition of atomic systems and has not yet been observed in charged colloids. The reported experimental observations on charged colloidal suspensions are discussed in the light of present simulation results.  相似文献   

18.
We employ experiment and theory to explore the nonlinear elasticity and yielding of concentrated suspensions of nanoparticles which interact via purely repulsive forces. These glassy suspensions are found to exhibit high exponent power law or simple exponential dependences of the shear elastic modulus and perturbative yield stress on nanoparticle volume fraction, as well as a monotonic decrease of the perturbative yield strain with increasing concentration. Our experimental observations are in good agreement with the predictions of a recently developed microscopic statistical mechanical theory, which describes glassy dynamics based on a nonequilibrium free energy that incorporates local cage correlations and activated barrier hopping processes [(1) Schweizer, K. S.; Saltzman, E. J. J. Chem. Phys. 2003, 119, 1181. (2) Saltzman, E. J.; Schweizer, K. S. J. Chem. Phys. 2003, 119, 1197. (3) Kobelev, V.; Schweizer, K. S. Phy. Rev. E 2005, 71, 021401].  相似文献   

19.
We apply the quiescent and mechanically driven versions of nonlinear Langevin equation theory to study how particle softness influences the shear modulus, the connection between shear elasticity and activated relaxation, and nonlinear rheology of the repulsive Hertzian contact model of dense soft sphere fluids. Below the soft jamming threshold, the shear modulus follows a power law dependence on volume fraction over a narrow interval with an apparent exponent that grows with particle stiffness. To a first approximation, the elastic modulus and transient localization length are controlled by a single coupling constant determined by local fluid structure. In contrast to the behavior of hard spheres, an approximately linear relation between the shear modulus and activation barrier is predicted. This connection has recently been observed for microgel suspensions and provides a microscopic realization of the elastic shoving model. Yielding, shear and stress thinning of the alpha relaxation time and viscosity, and flow curves are also studied. Yield strains are relatively weakly dependent on volume fraction and particle stiffness. Shear thinning commences at values of the effective Peclet number far less than unity, a signature of stress-assisted activated relaxation when barriers are high. Apparent power law reduction of the viscosity with shear rate is predicted with a thinning exponent less than unity. In the vicinity of the soft jamming threshold, a power law flow curve occurs over an intermediate reduced shear rate range with an apparent exponent that decreases as fluid volume fraction and/or repulsion strength increase.  相似文献   

20.
The adsorption of cationic polyelectrolytes on colloidal silica-particles is investigated. The polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) PDADMAC of different molar mass have been used. The adsorbed amount is influenced by the ionic strength and pH of the suspension and the molar mass of the macromolecule. The adsorption determines the zetapotential of the covered particles. The electrostatic interaction between the particles as well as the structure of the adsorbed polyelectrolytes play an important role in the stabilization and flocculation behaviour of the polyelectrolyte covered suspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号