首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
表面活性剂的分子结构对蠕虫胶束的形成与性质有着重要影响。本文以十四酸和间苯三酚为起始原料,合成了一种三聚阴离子表面活性剂(2, 2', 2"-(苯基-1, 3, 5-三(氧))-三-十四酸钠,简写为Ph-TrisC14Na),并通过稳态和动态流变测试,研究了单组分的Ph-TrisC14Na和Ph-TrisC14Na/阳离子添加剂体系的粘弹性质。阳离子添加剂分别为正丁基三甲基溴化铵(C4TAB),正己基三甲基溴化铵(C6TAB)和正辛基三甲基溴化铵(C8TAB)。结果表明,依赖于独特的分子构型,Ph-TrisC14Na分子自身即可形成蠕虫胶束,使溶液表现出明显的粘弹性。阳离子添加剂的加入可进一步优化Ph-TrisC14Na的分子几何结构,促进蠕虫胶束更为快速地生长。随着阳离子添加剂疏水链长的增加,溶液的粘弹性显著增强,体系微结构对添加剂的敏感性也增加。对于50 mmol·L-1的Ph-TrisC14Na溶液来说,在C8TAB与Ph-TrisC14Na的摩尔比为0.5时,体系的零剪切粘度可达1535 Pa·s,蠕虫胶束的长度则达到4.0-7.5 μm。该体系体现出低聚表面活性剂在构筑表面活性剂粘弹溶液方面的优势,可拓展高粘弹性阴离子蠕虫胶束体系的研究范围。  相似文献   

2.
采用流变测试技术考察了两种阴离子表面活性剂油酸钠(NaOA)和芥酸钠(NaOEr)在四丁基溴化铵(TBAB)和KCl诱导下构筑蠕虫状胶束的行为.随着KCl浓度增加, NaOA水溶液粘度增加,而加入TBAB使NaOA-KCl样品的粘度持续降低.与之相反, TBAB浓度的增加却使NaOEr-KCl样品的粘度大幅度增强.此外, NaOEr分子比NaOA表现出更强的形成胶束的能力,构成粘弹性蠕虫状胶束所需表面活性剂浓度和盐浓度更少.本文采用TBAB和KCl两种盐协同诱导NaOEr,制备了具有强粘弹性的阴离子蠕虫状胶束,探讨了盐TBAB/KCl对长链阴离子表面活性剂构筑蠕虫状胶束的影响机理.  相似文献   

3.
介绍了粘弹性蠕虫状胶束的形成、类型、基本性质及其应用情况.粘弹性蠕虫状胶束具有重要的微观结构,因其特殊的流变性能而在不同领域具有重要应用.最近,蠕虫状胶束的结构和动态性质的研究已经延伸到不同类型的表面活性剂,如阴离子、两性离子和聚合物表面活性剂.目前,其应用领域已经拓展到油田、社区冷热流体的减阻、个人护理和家庭清洁产品的增稠剂等方面.  相似文献   

4.
Hydrazine nitrate (HN), an inorganic salt, was first found to have dual effects on inducing obvious viscoelasticity of both cationic and anionic surfactant solutions. It was interesting that the surfactant solutions exhibited characteristic wormlike micelle features with strong viscoelastic properties upon the addition of this inorganic salt. The rheological properties of the surfactant solutions have been measured and discussed. The apparent viscosity of the solutions showed a volcano change with an increase of the HN concentration. Correspondingly, the microstructures of the micelles in the solutions changed with the apparent viscosity. First, wormlike micelles began to form and grew with an increase of the HN concentration. Subsequently, the systems exhibited linear viscoelasticity with characteristics of a Maxwell fluid in the intermediate mass fraction range, which originated from a 3D entangled network of wormlike micelles. Finally, a transition from linear micelles to branched ones probably took place at higher HN contents. In addition, the origin of the dual effects brought by HN addition on inducing viscoelasticity in both cationic and anionic surfactant solutions was investigated.  相似文献   

5.
赵剑曦  谢丹华 《化学进展》2012,24(4):456-462
本文从分析蠕虫胶束形成的分子几何条件和自由能驱动因素入手,总结了传统阴离子表面活性剂蠕虫胶束的形成和性质,指出制约其构筑和产生优良黏弹性的原因。在此基础上,介绍了Gemini表面活性剂构筑蠕虫胶束的分子结构优势,以及由此构筑阴离子蠕虫胶束的研究进展,尤其是长刚性联接链Gemini表面活性剂形成的蠕虫胶束。最后特别指出,基于新颖分子结构优势,Gemini表面活性剂可望成为蠕虫胶束构筑的主要分子对象。  相似文献   

6.
Effect of 1 and 2-naphthols on the shape transition of cetyl trimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB) micelles are studied. Stimuli-responsive viscoelastic gels of long wormlike micelles are formed at low surfactant concentrations in the presence of neutral naphthols, where H-bonding plays a key role in micellar shape transition in the absence of any charge screening. Micelle-embedded naphthols also act as novel self-fluorescence probes for monitoring viscoelasticity of the system as a function of applied shear. 1H NMR study shows that the solubilization sites of naphthols in the micelle are located near the surface. While UV absorption and Fourier transform infrared studies confirm the presence of intermolecular H-bonds in micelle embedded naphthols, transmission electron micrographs of vacuum-dried samples at room temperature demonstrate the transition in shape from sphere to rodlike micelles.  相似文献   

7.
The phase behavior and self-assembled structures of perfluoroalkyl sulfonamide ethoxylate, C8F17SO2N(C3H7)(CH2CH2O)20H (abbreviated as C8F 17EO20), a nonionic fluorocarbon surfactant in an aqueous system, has been investigated by the small-angle X-ray scattering (SAXS) technique. The C8F17EO20 forms micelles and different liquid crystal phases depending on the temperature and composition. The fluorocarbon micellar structure induced by temperature or composition change and added fluorocarbon cosurfactant has been systematically studied. The SAXS data were analyzed by the indirect Fourier transformation (IFT) and the generalized indirect Fourier transformation (GIFT) depending on the volume fraction of the surfactant and complemented by plausible model calculations. The C8F17EO20 forms spherical type micelles above critical micelle concentration (cmc) in the dilute region. The micelle tends to grow with temperature; however, the growth is not significant on changing temperature from 15-75 degrees C, which is attributed to the higher clouding temperature of the surfactant (>100 degrees C). On the other hand, the micellar structure (shape and size) is apparently unaffected by composition (1-25 wt %) at 25 degrees C. Nevertheless, addition of fluorocarbon cosurfactant of structure C8F17SO2N(C3H7)(CH2CH2O)H (abbreviated as C8F17EO1) to the semidilute solution of C8F17EO20 (25 wt %) favors micellar growth, which finally leads to the formation of viscoelastic wormlike micelles, as confirmed by rheometry and supported by SAXS. The onset sphere-to-wormlike transition in the structure of micelles in the C8F17EO20/water/C8F17EO1 system is due to the fact that the C8F17EO1 tends to go to the surfactant palisade layer so that the critical packing parameter increases due to a decrease in the effective cross-sectional area of the headgroup. As a result, spherical micelles grow into a cylinder, which after a certain concentration entangle to form a rigid network structure of wormlike micelles.  相似文献   

8.
A simple and effective route to design pH-responsive viscoelastic wormlike micelles based on commercial compounds is reported. According to this route, pH-sensitive viscoelastic fluids can be easily obtained by introducing a pH-responsive hydrotrope into a surfactant solution. In this paper, the mixed system of cetyltrimethylammonium bromide (CTAB) and potassium phthalic acid (PPA) was studied in detail. This pH-sensitive fluid can be switched between a gellike state and a waterlike state within a narrow pH change. Rheology and DLS results revealed that the pH-sensitive flowing behavior was attributed to the microstructure transition between wormlike micelles and short cylindrical micelles. Combined with fluorescence anisotropy, NMR, and UV–vis, it was demonstrated that the pH response of viscoelastic fluid originated from the different binding abilities of hydrotrope to surfactant as pH varies. Furthermore, different kinds of hydrotropes can be utilized to prepare pH-responsive viscoelastic fluids in the desired pH areas.  相似文献   

9.
用稳态和动态流变学方法研究了3-十六烷氧基-2-羟丙基三甲基溴化铵(R16HTAB)单纯以及水杨酸钠(NaSal)存在下溶液的流变特性.无盐体系中,在测定的浓度范围内,表面活性剂与零剪切黏度呈指数关系(η0∝c^2.53).水杨酸钠的加入促进了体系由球状向蠕虫状胶束转化.Cox—Merz规则和Cole-Cole图证明,混合体系生成了蠕虫状胶束.与传统的CTAB比较,无论水杨酸钠存在与否,R16HTAB水溶液的流变性能均较好,这主要归因于羟丙基基团的插入,使得R16HTAB和NaSal分子之间形成氢键连接,生成了更加稳定的三维网络结构.应用冷冻蚀刻电子显微镜技术进一步证实了体系中蠕虫状胶柬的存在.  相似文献   

10.
The size and shape of micelles formed in aqueous mixtures of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic sugar-based surfactant n-decyl beta-D-glucopyranoside (C(10)G) at different concentrations of added salt have been investigated with small-angle neutron and static light scattering. Rather small prolate ellipsoidal micelles form in the absence of added salt and at [NaCl] = 10 mM in D(2)O. The micelles grow considerably in length to large rods as the electrolyte concentration is raised to [NaCl] = 0.1 M. In excess of nonionic surfactant ([SDS]/[C(10)G] = 1:3) at [NaCl] = 0.1 M in D(2)O, several thousands of Angstroms long wormlike micelles are observed. Most interestingly, a conspicuously large isotope solvent effect was observed from static light scattering data according to which micelles formed at [SDS]/[C(10)G] = 1:3 and [NaCl] = 0.1 M in H(2)O are at least five times smaller than micelles formed in the corresponding samples in D(2)O.  相似文献   

11.
Above the critical micellar concentration (cmc), micelles with a wide variety of structures and shapes are formed with the increase of surfactant concentra-tion in surfactant-water or surfactant-water-oil systems, such as spherical micelles, rodlike micelles, and bilay-ers. The viewpoint that micelle should be in spheres of constant size was first proposed by Hartley[1]. Later experiments by light scatter indicated that most mi-celles were indeed spherical, and their aggregation numbers were c…  相似文献   

12.
The interactions between an oxyphenylethylene-oxyethylene nonionic diblock copolymer with the anionic surfactant sodium dodecyl sulfate (SDS) have been studied in dilute aqueous solutions by static and dynamic light scattering (SLS and DLS, respectively), isothermal titration calorimetry (ITC), and 13C and self-diffusion nuclear magnetic resonance techniques. The studied copolymer, S20E67, where S denotes the hydrophobic styrene oxide unit and E the hydrophilic oxyethylene unit, forms micelles of 15.6 nm at 25 degrees C, whose core is formed by the styrene oxide chains surrounded by a water swollen polyoxyethylene corona. The S20E67/SDS system has been investigated at a copolymer concentration of 2.5 g dm(-3), for which the copolymer is fully micellized, and with varying surfactant concentration up to approximately 0.15 M. When SDS is added to the solution, two different types of complexes are observed at various surfactant concentrations. From SLS and DLS it can be seen that, at low SDS concentrations, a copolymer-rich surfactant mixed micelle or complex is formed after association of SDS molecules to block copolymer micelles. These interactions give rise to a strong decrease in both light scattering intensity and hydrodynamic radius of the mixed micelles, which has been ascribed to an effective reduction of the complex size, and also an effect arising from the increasing electrostatic repulsion of charged surfactant-copolymer micelles. At higher surfactant concentrations, the copolymer-rich surfactant micelles progressively are destroyed to give surfactant-rich-copolymer micelles, which would be formed by a surfactant micelle bound to one or very few copolymer unimers. ITC data seem to confirm the results of light scattering, showing the dehydration and rehydration processes accompanying the formation and subsequent destruction of the copolymer-rich surfactant mixed micelles. The extent of interaction between the copolymer and the surfactant is seen to involve as much as carbon 3 (C3) of the SDS molecule. Self-diffusion coefficients corroborated light scattering data.  相似文献   

13.
We prepared a CO2/N2-switchable pseudogemini surfactant system composed of sodium oleate (NaOA) and N, N, N’, N’-tetramethyl-1, 6-hexanediamine (TMHDA) at a mole ratio of 2:1. The two tertiary amine groups of the TMHDA can be protonated into quaternary ammonium salt when the system was bubbled with CO2, which can ‘‘bridge’’ two NaOA molecules via electrostatic attraction to form a pseudogemini surfactant. The formed pseudogemini surfactant can further self-assemble to wormlike micelles, causing a sharp increase in viscosity. The viscoelastic property and structure transitions of the pseudogemini surfactant system were investigated before and after bubbling of CO2. The pseudogemini surfactant system transformed from water-like to gel-like fluid with the bubbling of CO2, followed by white precipitate. The cryo-transmission electron microscope (cryo-TEM) characterization and rheological measurements exhibited that the sol–gel transition was attributed to a spherical-wormlike micelle transition. Moreover, this transition was switchable at least in three cycles. Finally, a reasonable mechanism of aggregate behavior transition was proposed from the viewpoint of the molecular states, micelle structures, and intermolecular interactions.  相似文献   

14.
The wormlike micelles formed with the binary mixtures of surfactant polyoxyethylene alkyl ethers (CiEj), C10E5 + C14E5 (Mix1) and C14E5 + C14E7 (Mix2), were characterized by static (SLS) and dynamic light scattering (DLS) experiments. The SLS results have been analyzed with the aid of the light scattering theory for micelle solutions, thereby yielding the molar mass Mw(c) as a function of c along with the cross-sectional diameter d of the micelle. The observed Kc/DeltaR0 as a function of c, the mean-square radius of gyration (S2) and the hydrodynamic radius RH as functions of Mw have been well described by the theories for the wormlike spherocylinder model. It has been found that the micellar length increases with increasing concentration c or with raising temperature T irrespective of the composition of the surfactant mixtures. The length of the Mix1 and Mix2 micelles at fixed c and T steeply increases with increasing weight fraction wt of C14E5 in both of the surfactant mixtures, implying that the micelles greatly grow in length when the surfactant component with longer alkyl group or with shorter oxyethylene group increases in the mixture. The results are in line with the findings for the micelles of the single surfactant systems where the CiEj micelles grow in length to a greater extent for larger i and smaller j. Although the values of d and the spacing s between the adjacent surfactant molecules on the micellar surface do not significantly vary with composition of the surfactant mixture, the stiffness parameter lambda-1 remarkably decreases with wt in both Mix1 and Mix2 micelles, indicating that the stiffness of the micelle is controlled by the relative strength of the repulsive force due to the hydrophilic interactions between oxyethylene groups to the attractive one due to the hydrophobic interactions between alkyl groups among the surfactant molecules.  相似文献   

15.
The rheology of solutions of wormlike micelles formed by oppositely charged surfactant mixtures (cationic cetyl trimethylammonium p-toluene sulfonate, CTAT, and anionic sodium dodecyl sulfate, SDS), in the dilute and semi-dilute regimes, were studied under simple shear and porous media flows. Aqueous mixtures of CTAT and SDS formed homogeneous solutions for SDS/CTAT molar ratios below 0.12. Solutions of mixtures exhibited a strong synergistic effect in shear viscosity, especially in the semi-dilute regime with respect to wormlike micelles, reaching a four order of magnitude increase in the zero-shear rate viscosity for solutions with 20 mM CTAT. Oscillatory shear results demonstrated that the microstructure of CTAT wormlike micelles is sensitive to SDS addition. The cross-over relaxation times of wormlike micelles of 20 mM CTAT solutions increased by three orders of magnitude with the addition of up to 2 mM of SDS, and the solutions became increasingly elastic. The shear thickening process observed in shear rheology became more pronounced in porous media flow due to the formation of stronger cooperative structures induced by the extensional component of the flow.  相似文献   

16.
Rheological studies were performed with aqueous salt solutions of viscoelastic cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride (EHAC) and its mixtures with hydrophobically modified polyacrylamide. The solutions of surfactant itself above the concentration of crossover of wormlike micelles exhibit two regions of rheological response. In the first region, they behave like polymer solutions in semidilute regime characterized by viscoelastic behavior with a spectrum of relaxation times. In the second region, unlike polymer solutions their relaxation after shear is dominated by a single relaxation time. Being composed of "living" micelles, the EHAC solutions easily lose their viscosity at the variation of the external conditions. For instance, heating from 20 to 60 degrees C reduces viscosity by up to 2 orders of magnitude, while added hydrocarbons induce a sudden drop of viscosity by 3-6 orders of magnitude. Polymer profoundly affects the rheological properties of EHAC solutions. The polymer/surfactant system demonstrates a 10,000-fold increase in viscosity as compared to pure-component solutions, the effect being more pronounced for polymer with less blocky distribution of hydrophobic units. A synergistic enhancement of viscosity was attributed to the formation of common network, in which some subchains are made up of elongated surfactant micelles, while others are composed of polymer. At cross-links the hydrophobic side groups of polymer anchor EHAC micelles. In contrast to surfactant itself, the polymer/surfactant system retains high viscosity at elevated temperature; at the same time it keeps a high responsiveness to hydrocarbon medium inherent to EHAC.  相似文献   

17.
Amino acid-based anionic surfactant, N-dodecanoylglutamic acid, after neutralizing by 2, 2′, 2″-nitrilotriethanol forms micellar solution at 25 °C. Addition of cationic cosurfactants hexadecyltrimethylammonium chloride (CTAC), hexadecylpyridinium chloride (CPC), and hexadecylpyridinium bromide (CPB) to the semi-dilute solution of anionic surfactant micellar solutions favor the micellar growth and after a certain concentration, entangled rigid network of wormlike micelles are formed. Viscosity increases enormously ~4th order of magnitude compared with water. With further addition of the cosurfactants, viscosity declines and phase separation to liquid crystal occurs. The wormlike micelles showed a viscoelastic behavior and described by Maxwell model with a single stress-relaxation mode. The position of viscosity maximum in the zero-shear viscosity curve shifts towards lower concentration upon changing cosurfactant from CPB to CTAC via CPC; however, the maximum viscosity is highest in the CPB system showing the formation of highly rigid network structure of wormlike micelles. In all the systems, viscosity decays exponentially with temperature following Arrhenius type behavior.  相似文献   

18.
The interaction of amphiphilic block copolymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous media has been studied by sedimentation in ultracentrifuge. Three well-defined populations of hybrid aggregates corresponding to micelles, micellar clusters, and supermicellar aggregates were detected in the PS-b-PEO/SDS aqueous solutions at various rotation rates. Parameters of all the micellar aggregates were characterized depending on the SDS loading. An increase in the SDS loading was found to result in an increase in block copolymer/surfactant micelle size and weight at the SDS concentration of 0.8x10(-3) mol/L and in a slight decrease of both parameters at critical micelle concentration and at higher concentration. This decrease was caused by incorporation of SDS molecules in block copolymer micelles followed by charging the PS core and repulsion between similar charges. Using dichlorotetrapyridine rhodium(III)chloride hexahydrate ([Rh(Py)(4)Cl(2)]Clx6H(2)O), ion exchange of surfactant counterions in the hybrid PS-b-PEO/SDS system for Rh cations was carried out, which allowed saturating the micellar structures with Rh species. Subsequent reduction of the Rh-containing hybrid solutions with NaBH(4) resulted in the formation of Rh nanoparticles with a diameter of 2-3 nm mainly located in the block copolymer micellar aggregates. Copyright 2000 Academic Press.  相似文献   

19.
Many aspects of the behavior of surfactants have not been well understood due to the coupling of many different mechanisms. Computer simulation is, therefore, attractive in the sense that it can explore the effect of different mechanisms separately. In this paper, the shapes, structures and sizes of sodium dodecylbenzenesulfonate (SDBS) micelles under different concentrations in an oil/water mixture were studied via molecular dynamics (MD) simulations using a simplified atomistic model which basically maintains the hydrophile and lipophile properties of the surfactant molecules. Above the critical micellar concentration (cmc), surfactant molecules aggregate spontaneously to form a wide variety of assemblies, from spherical to rodlike, wormlike and bilayer micelles. Changes in their ratios of the principle moments of inertia (g1/g3, g2/g3) indicated the transition of micelle shapes at different concentrations. The aggregation number of micelle is found to have a power-law dependence on surfactant concentration.  相似文献   

20.
The effect of toluene solubilization on the size and mobility of Triton X100 (TX100) micelles and TX100/sodium dodecyl sulfate (SDS) mixed micelles was studied by turbidimetry, dynamic light scattering, and capillary electrophoresis. Micelle growth due to toluene solubilization was observed for both surfactant systems; however, two different modes of growth were seen. Mixed micelles in 0.1 M NaCl are spherical (apparent diameter d(app) = 8 nm) and remain so while taking up 3 mM toluene, with a volume increase per micelle of deltaV(m) = 50 nm3. In 0.5 M NaCl, the large d(app) of both nonionic and mixed micelles (14 and 24 nm, respectively) indicate ellipsoidal or rodlike shapes, and their large increases in d(app) upon addition of 3 mM toluene thus correspond to elongational growth, with the same deltaV(m) = 50 nm3. Further addition of toluene to TX100/SDS in 0.5 M NaCl results in a dramatic increase in micelle size followed by an unexpected bimodal size distribution. The addition of excess toluene leads to the formation of ca. 140 nm toluene droplets, stabilized mainly by monomers of the high critical micelle concentration surfactant, SDS. These microemulsions coexist with the smaller (20 nm) swollen mixed micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号