共查询到20条相似文献,搜索用时 31 毫秒
1.
Abanulo JC Harris RD Sheridan AK Wilkinson JS Bartlett PN 《Faraday discussions》2002,(121):139-25;discussion 229-51
We describe the fabrication and characterisation of gold-coated graded index channel waveguide sensors designed for simultaneous electrochemical and surface plasmon resonance studies. The active sensing electrode area is a thin gold film between 0.5 and 5 mm in length and 200 microm wide deposited on top of a 3 microm wide waveguide which forms one arm of a Y-junction while the other arm of the Y-junction serves as a reference. Using these devices we have measured simultaneously the changes in transmittance through the device whilst carrying out cyclic voltammetry in either sulfuric or perchloric acid solution or during the deposition of an UPD layer of copper at the gold surface. In all cases we obtain stable and reproducible results which demonstrate the very high sensitivity of the devices to sub-monolayer changes occurring at the gold electrode surface. The response of these integrated optoelectrochemical devices is discussed in terms of a numerical model for the propagation of light within the waveguide structure. 相似文献
2.
Kim YR Paik HJ Ober CK Coates GW Mark SS Ryan TE Batt CA 《Macromolecular bioscience》2006,6(2):145-152
The kinetics of enzymatic surface-initiated polymerization of PHB on gold surface has been examined by SPR and the resultant polymer layers characterized by AFM and FT-IR spectrometry. The immobilized enzyme catalyzed surface-initiated polymerization of 3HB-CoA, resulting in the formation of a polymer brush on the surface. The rate of polymer growth from the surface was monitored by SPR in real-time. Polymer growth as measured by the increase in the resonance angle showed no apparent lag phase during the polymerization reaction. SPR analysis also revealed that the thickness of the polymer film could be controlled by varying the initial enzyme density on the surface. The average thicknesses of the PHB film after polymerization reaction were 95, 45 and 15 nm for the surfaces that were treated with 0.5, 0.3 and 0.1*10(-6) M of enzyme, respectively. The binding of PHA synthase at different concentration to the mixed SAMs and subsequent polymerization. 相似文献
3.
Sonesson AW Callisen TH Brismar H Elofsson UM 《Colloids and surfaces. B, Biointerfaces》2007,54(2):236-240
This work was performed with the aim of comparing protein adsorption results obtained from the recently developed dual polarization interferometry (DPI) with the well-established surface plasmon resonance (SPR) technique. Both techniques use an evanescent field as the sensing element but completely different methods to calculate the adsorbed mass. As a test system we used adsorption of the lipase from Thermomyces lanuginosus (TLL) on C18 surfaces. The adsorbed amount calculated with both techniques is in good agreement, with both adsorption isotherms saturating at 1.30–1.35 mg/m2 at TLL concentrations of 1000 nM and above. Therefore, this supports the use of both SPR and DPI as tools for studying protein adsorption, which is very important when comparing adsorption data obtained from the use different techniques. Due to the spot sensing in SPR, this technique is recommended for initial kinetic studies, whereas DPI is more accurate when the refractive index and thickness of the adsorbed layer is of more interest. 相似文献
4.
Sabine Szunerits Nazek Maalouli Edy Wijaya Jean-Pierre Vilcot Rabah Boukherroub 《Analytical and bioanalytical chemistry》2013,405(5):1435-1443
Surface plasmon resonance (SPR) is a powerful technique for measurement of biomolecular interactions in real-time in a label-free environment. One of the most common techniques for plasmon excitation is the Kretschmann configuration, and numerous studies of ligand–analyte interactions have been performed on surfaces functionalized with a variety of biomolecules, for example DNA, RNA, glycans, proteins, and peptides. A significant limitation of SPR is that the substrate must be a thin metal film. Post-coating of the metal thin film with a thin dielectric top layer has been reported to enhance the performance of the SPR sensor, but is highly dependent on the thickness of the upper layer and its dielectric constant. Graphene is a single-atom thin planar sheet of sp2 carbon atoms perfectly arranged in a honeycomb lattice. Graphene and graphene oxide are good supports for biomolecules because of their large surface area and rich π conjugation structure, making them suitable dielectric top layers for SPR sensing. In this paper, we review some of the key issues in the development of graphene-based SPR chips. The actual challenges of using these interfaces for studying biomolecular interactions will be discussed and the first examples of the use of graphene-on-metal SPR interfaces for biological sensing will be presented. 相似文献
5.
Szunerits S Coffinier Y Janel S Boukherroub R 《Langmuir : the ACS journal of surfaces and colloids》2006,22(25):10716-10722
This article reports chemical stability studies of a gold film electrode coated with thin silicon oxide (SiOx) layers using electrochemical, surface plasmon resonance (SPR) and atomic force microscopy (AFM) techniques. Silica films with different thicknesses (d = 6.4, 9.7, 14.5, and 18.5 nm) were deposited using a plasma-enhanced chemical vapor deposition technique (PECVD). For SiOx films with d >/= 18.5 nm, the electrochemical behavior is characteristic of a highly efficient barrier for a redox probe. SiOx films with thicknesses between 9.5 and 14.5 nm were found to be less efficient barriers for electron transfer. The Au/SiOx interface with 6.4 nm of SiOx, however, showed an enhanced steady-state current compared to that of the other films. The stability of this interface in solutions of different pH was investigated. Whereas a strongly basic solution led to a continuous dissolution of the SiOx interface, acidic treatment produced a more reticulated SiOx film and improved electrochemical behavior. The electrochemical results were corroborated by SPR measurements in real time and AFM studies. 相似文献
6.
Vutukuru S Bethi SR Kane RS 《Langmuir : the ACS journal of surfaces and colloids》2006,22(24):10152-10156
This paper describes the use of surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) to understand the characteristics of surfaces that promote the adsorption of proteins at high ionic strengths (high-salt conditions). We synthesized SAMs presenting different multimodal ligands and determined the influence of surface composition, solution composition, and the nature of the protein on the extent of protein adsorption onto the SAMs. Our results confirm that hydrophobic interactions can contribute significantly to protein adsorption under high-salt conditions. In particular, the extent of protein adsorption under high-salt conditions increased with increasing surface hydrophobicity. The extent of protein adsorption was also influenced by the solution composition and decreased with an increase in the chaotropicity of the anion. The combination of SPR and SAMs is well-suited for studying the interaction of proteins with complex surfaces of relevance to chromatography. 相似文献
7.
Andy Chieng Michelle Chiang Kraisarun Triloges Megan Chang Yixian Wang 《Current Opinion in Electrochemistry》2019
Surface plasmon resonance (SPR) is a label-free spectroscopic technique that is highly sensitive to various surface reactions. Incorporating SPR into electrochemical measurements has emerged as a powerful method to study both faradaic and non-faradaic processes. SPR microscopy (SPRM) integrates an optical microscope into SPR detection, which further offers high throughput detection and spatially resolved information at an electrode surface and thus, has attracted attention especially in single entity electrochemical studies. In this review, the progress in the studies of electrochemical interfaces by SPR and SPRM during the past two years will be discussed. 相似文献
8.
Here we report an effective method for protein immobilization on a surface plasmon resonance (SPR) gold chip, describing the combination of cysteine- and oligomerization domain-mediated immobilization of enhanced green fluorescent protein (EGFP) as a model protein for the purpose of orientation-controlled surface density packing. In order to facilitate the oligomerization of EGFP, the dimeric and trimeric constructs derived from GCN4- leucine zipper domain were chosen for multimeric EGFP assembly. For orientation-controlled immobilization of the protein, EGFP modified with cysteine residues showing excellent orientation on a gold chip was used as a starting protein, as previously reported in our earlier study (Anal. Chem., 2007, 79, 2680-2687). Constructs of EGFP with oligomerization domains were genetically engineered, and corresponding fusion proteins were purified, applied to a gold chip, and then analyzed under SPR. The immobilized EGFP density on a gold chip increased according to the states of protein oligomerization, as dimeric and trimeric EGFPs displayed better adsorption capability than monomeric and dimeric forms, respectively. Fluorescence measurement corroborated the SPR results. Taken together, our findings indicated that the combination of cysteine- and oligomerization domain-mediated immobilization of protein could be used in SPR biosensor applications, allowing for an excellent orientation and high surface density simultaneously. 相似文献
9.
Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance 总被引:1,自引:0,他引:1
The activity of the enzyme urease is known to be inhibited by the heavy metal cadmium. The binding of cadmium to urease and the consequent changes of the enzyme structure are the basis of the surface plasmon resonance (SPR) biosensing system reported herein. To facilitate the formation of a self-assembled monolayer (SAM) of the urease on gold-coated glass SPR sensor disks, the enzyme has been modified with N-succinimidyl 3-(2-pyridyldithiol) propionate (SPDP). The urease monolayer was exposed to trace levels of cadmium ions and monitored by SPR. From circular dichroism (CD) data, it is believed that the conformation of the active nickel site of the urease changes upon binding of the cadmium ions. It is this change of the enzyme monolayer, measured by SPR, which has been related to the cadmium ion concentration in the range of 0–10 mg l−1. These data are the first report of a SPR biosensor capable of detecting metal ions. 相似文献
10.
Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene 总被引:1,自引:0,他引:1
Wang L Zhu C Han L Jin L Zhou M Dong S 《Chemical communications (Cambridge, England)》2011,47(27):7794-7796
Label-free, regenerative and sensitive surface plasmon resonance (SPR) and electrochemical aptasensors based on graphene for the detection of α-thrombin have been reported, which propose a new, simple way for protein recognition with high sensitivity and selectivity. 相似文献
11.
The use of growth hormones (recombinant somatotropins (rSTs)) is approved in several countries, e.g. the USA, Brazil and Australia to enhance growth or lactating performances of livestock. Their use in the EU is banned, however, due to the widespread application, the illegal use within the EU cannot be excluded. To screen for rSTs in injection preparations, a biosensor immunoassay (BIA) using surface plasmon resonance (SPR) technology was developed. Compared to existing analysis methods for rSTs, like radio immunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA), this technique provides a rapid (7 min) alternative. A direct BIA was compared to an indirect (inhibition) BIA and the performances of several antibodies against (r)STs were compared in the indirect BIA. In the final inhibition assay, using rabbit anti-bovine rST, extracts from several injection preparations were shown to contain bovine rST (rbST). The limit of detection for rbST in the assay is 0.008 microg mL(-1) which is far below the expected concentrations in injection preparations. Although the cross-reactivities for STs of other species were low, screening of injection preparations for porcine, equine and human ST was feasible through the analysis of less diluted extracts. Tryptic digestion followed by nano-electrospray liquid chromatography-ion trap tandem mass spectrometry (nano-LC-MS/MS) was used to identify STs. 相似文献
12.
Hu W Li CM Cui X Dong H Zhou Q 《Langmuir : the ACS journal of surfaces and colloids》2007,23(5):2761-2767
Poly(pyrrole-co-pyrrole propylic acid) (PPy/PPa) composite films were prepared for the first time by electrochemical copolymerization in mixed pyrrole propylic acid (Pa) and pyrrole solutions. The electrochemical growth process was investigated by in situ electrochemical surface plasmon resonance (ESPR). Atomic force microscopy and Fourier transform infrared spectroscopy were applied to characterize the prepared films. Using bovine serum albumin as a model protein, the adsorption kinetics of the protein on PPy/PPa films were studied in situ by SPR. The composition of Pa, the isoelectric point of proteins, the pH of buffers, and surfactant treatment showed dramatic effects on the protein adsorption on the PPy/PPa film. Experimental results indicated that the electrostatic interaction between the PPy/PPa film and proteins plays a critical role in protein adsorption and provided a novel strategy to efficiently immobilize proteins and to reduce nonspecific bindings of proteins in an immunobiosensor. 相似文献
13.
Lioubashevski O Chegel VI Patolsky F Katz E Willner I 《Journal of the American Chemical Society》2004,126(22):7133-7143
The enzyme glucose oxidase (GOx) is reconstituted on a flavin adenin dinucleotide (FAD, 1) cofactor-functionalized Au-nanoparticle (Au-NP), 1.4 nm, and the GOx/Au-NP hybrid is linked to a bulk Au-electrode by a short dithiol, 1,4-benzenedithiol (2), or a long dithiol, 1,9-nonanedithiol (3), monolayer. The reconstituted GOx/Au-NP hybrid system exhibits electrical communication between the enzyme redox cofactor and the Au-NP core. Because the thiol monolayers provide a barrier for electron tunneling, the electron transfer occurring upon the biocatalytic oxidation of glucose results in the Au-NPs charging. The charging of the Au-NPs alters the plasma frequency and the dielectric constant of the Au-NPs, thus leading to the changes of the dielectric constant of the interface. These are reflected in pronounced shifts of the plasmon angle, theta(P), in the surface plasmon resonance (SPR) spectra. As the biocatalytic charging phenomenon is controlled by the concentration of glucose, the changes in the theta(P) values correlate with the concentration of glucose. The biocatalytic charging process is characterized by following the differential capacitance of the GOx/Au-NP interface and by monitoring the potential generated on the bulk Au-electrode. The charging of the GOx/Au-NPs is also accomplished in the absence of glucose by the application of an external potential on the electrode, that resulted in similar plasmon angle shifts. The results allowed us to estimate the number of electrons stored per Au-NP at variable concentrations of glucose in the presence of the two different thiol linkers. 相似文献
14.
A novel Zn(II) ions imprinted poly (2-hydroxyethyl Methacrylate-N-methacryloyl-(L)-histidine methyl ester) poly(HEMAH) surface plasmon resonance (SPR) nanosensor were designed for detection of Zn(II) ions in aqueous solution and artificial plasma providing a low cost, rapid and reliable results compared to other techniques such as atomic absorption spectroscopy, inductively coupled plasma-mass spectrometer, X-ray fluorescence with synchrotron radiation. Zn(II) ions imprinted nanofilm on the SPR chip surface was synthesized by bulk polymerization. Characterization of Zn(II) ions imprinted nanosensor was performed by contact angle measurement, atomic force microscopy (AFM), ellipsometry and Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR). Designed nanosensor was applied for selective detection of Zn(II) ions in aqueous solution within the range of 0.5–1.0?µg/mL. The limit of detection (LOD) and limit of quantification (LOQ) were calculated as 0.19 and 0.64?ng/mL, respectively. Association kinetics analysis, Scatchard, Langmuir, Freundlich, Langmuir–Freundlich, Tempkin and Dubinin-Radushkevich isotherms were analyzed to the experimental data in order to identify the adsorption behavior. The selectivity of the SPR nanosensor was examined by using competitive metal ions such as Cd(II), Cu(II), Pb(II), and Fe(II). To evaluate the imprinting effect of Zn(II) ions imprinted (MIP) and non-imprinted (NIP) nanosensor was also prepared as the control. Repeatability of the response signal was tested by four times adsorption–desorption–regeneration cycle. 相似文献
15.
Doron-Mor I Cohen H Barkay Z Shanzer A Vaskevich A Rubinstein I 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(19):5555-5562
The distance dependence of the localized surface plasmon (SP) extinction of discontinuous gold films is a crucial issue in the application of transmission surface plasmon resonance (T-SPR) spectroscopy to chemical and biological sensing. This derives from the usual sensing configuration, whereby an analyte binds to a selective receptor layer on the gold film at a certain distance from the metal surface. In the present work the distance sensitivity of T-SPR spectroscopy of 1.0-5.0 nm (nominal thickness) gold island films evaporated on silanized glass substrates is studied by using coordination-based self-assembled multilayers, offering thickness tuning in the range from approximately 1 to approximately 15 nm. The morphology, composition and optical properties of the Au/multilayer systems were studied at each step of multilayer construction. High-resolution scanning electron microscopy (HRSEM) showed no apparent change in the underlying Au islands, while atomic force microscopy (AFM) indicated flattening of the surface topography during multilayer construction. A regular growth mode of the organic layers was substantiated by X-ray photoelectron spectroscopy (XPS). Transmission UV-visible spectra showed an increase of the extinction and a red shift of the maximum of the SP band upon addition of organic layers, establishing the distance dependence of the Au SP absorbance. The distance sensitivity of T-SPR spectroscopy can be varied by using characteristic substrate parameters, that is, Au nominal thickness and annealing. In particular, effective sensitivity up to a distance of at least 15 nm is demonstrated with 5 nm annealed Au films. It is shown that intensity measurements, particularly in the plasmon intensity change (PIC) presentation, provide an alternative to the usually measured plasmon band position, offering good accuracy and the possibility of measuring at a single wavelength. The present distance sensitivity results provide the basis for further development of T-SPR transducers based on receptor-coated Au island films. 相似文献
16.
1,6-Hexandithiol (HDT) forms 6.9 +/- 1.0 A thick defect-free monolayers on gold substrates if the solution is purged by argon during the adsorption while long term (> 1000 min) exposure of the substrate to alcoholic HDT results in the stepwise formation of multilayers in the absence of argon purging. 相似文献
17.
Infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR) techniques have been employed to investigate human serum albumin (HSA) binding to binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA). At the air-water interface, the favorable electrostatic interaction between DPPC and DOMA leads to a dense chain packing. The tilt angle of the hydrocarbon chains decreases with increasing mole fraction of DOMA (X(DOMA)) in the monolayers at the surface pressure 30 mN/m: DPPC ( approximately 30 degrees ), X(DOMA) = 0.1 ( approximately 15 degrees ), and X(DOMA) = 0.3 ( approximately 0 degrees ). Negligible protein binding to the DPPC monolayer is observed in contrast to a significant binding to the binary monolayers. After HSA binding, the hydrocarbon chains at X(DOMA) = 0.1 undergo an increase in tilt angle from 15 degrees to 25 approximately 30 degrees , and the chains at X(DOMA) = 0.3 remain almost unchanged. The two components in the monolayers deliver through lateral reorganization, induced by the protein in the subphase, to form multiple interaction sites favorable for protein binding. The surfaces with a high protein affinity are created through the directed assembly of binary monolayers for use in biosensing. 相似文献
18.
Interaction of straight chain alcohol vapors with MOF-199-functionalized films was studied by SPR.The signals had linear relationships with the concentration of alcohols over a wide range from 0 to 70%(v/v) and were reversible in proportional to the chain length,with R~2 all above 0.99. 相似文献
19.
Pyo HB Shin YB Kim MG Yoon HC 《Langmuir : the ACS journal of surfaces and colloids》2005,21(1):166-171
Multichannel images of 11-mercaptoundecanoic acid and 11-mercapto-1-undecanol self-assembled monolayers together with a biospecific interferon-gamma (IFN-gamma)/anti-IFN-gamma antibody immunoaffinity interaction were observed by the two-dimensional surface plasmon resonance (2D-SPR) imaging system. With the fabricated 2D-SPR imaging system, adopting a white light source in combination with a narrow band-pass filter, sharp images were resolved, minimizing the diffraction patterns on the resulting images. Micropatterning of self-assembled monolayers was acheived by exploiting the UV photolysis of thiol bonding, instead of conventional photolithography. The line profile calibration of the image contrast with ellipsometric analysis enabled us to discriminate the change in monolayer thickness within a sub-nanometer scale. For the protein interactions on the surface, the biospecific affinity recognition reaction of IFN-gamma antigen with surface-immobilized antibody was analyzed. Through the signal amplification strategy based on the enzyme-catalyzed precipitation reaction in a sandwich-type immunoassay, biospecific antigen binding was found detectable down to a concentration of 1 ng/mL. 相似文献
20.
Roussille L Brotons G Ballut L Louarn G Ausserré D Ricard-Blum S 《Analytical and bioanalytical chemistry》2011,401(5):1605-1621
We report the preparation and characterization of a matrix-free carboxylated surface plasmon resonance (SPR) sensor chip with
high sensing efficiency by functionalizing a bare gold thin film with a self-assembled monolayer of 16-mercaptohexadecanoic
acid (SAM–MHDA chip). The self assembled monolayer surface coverage of the gold layer was carefully evaluated and the SAM
was characterized by infrared reflection absorption spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy,
X-ray reflectivity-diffraction, and SPR experiments with bovine serum albumin. We compared the SPR signal obtained on this
chip made of a dense monolayer of carboxylic acid groups with commercially available carboxylated sensor chips built on the
same gold substrate, a matrix-free C1 chip, and a CM5 chip with a ~100 nm dextran hydrogel matrix (GE Healthcare). Two well-studied
interaction types were tested, the binding of a biotinylated antibody (immunoglobulin G) to streptavidin and an antigen–antibody
interaction. For both interactions, the well characterized densely functionalized SAM–MHDA chip gave a high signal-to-noise
ratio and showed a gain in the availability of immobilized ligands for their partners injected in buffer flow. It thus compared
favourably with commercially available sensor chips. 相似文献