首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Telechelic polymers are useful for surface protection and stabilization of colloidal dispersions by the formation of polymer brushes. A number of theoretical investigations have been reported on a weak attraction between two telechelic brushes when they are at the classical contact, i.e., when the surface separation is approximately equal to the summation of the brush thicknesses. While recent experiments have confirmed the weak attraction between telechelic brushes, its origin remains elusive because of conflicting approximations used in the previous theoretical calculations. In this paper, we have investigated the telechelic polymer-mediated surface forces by using a polymer density functional theory (PDFT) that accounts for both the surface-adhesive energy and segment-level interactions specifically. Within a single theoretical framework, the PDFT is able to capture both the depletion-induced attraction in the presence of weakly adhesive polymers and the steric repulsion between compressed polymer brushes. In comparison of the solvation forces between telechelic brushes with those between brushes formed by surfactant-like polymers and with those between two asymmetric surfaces mediated by telechelic polymers, we conclude that the weak attraction between telechelic brushes is primarily caused by the bridging effect. Although both the surfactant-like and telechelic polymers exhibit a similar scaling behavior for the brush thickness, a significant difference has been observed in terms of the brush microstructures, in particular, the segment densities near the edges of the polymer brushes.  相似文献   

2.
A polymer density functional theory (PDFT) for rod-coil copolymers with different size segments is proposed, in which the PDFT approach combines a modified fundamental measure theory for the excluded-volume effects, Wertheim's first-order thermodynamics perturbation theory for the chain connectivity and the mean field approximation for van der Waals attraction. First, for testing the PDFT derived, we compare the density profiles from present theory to simulation data, and find that the present theory successfully reproduces the simulation data. Therefore, we use the PDFT to further investigate the local density and solvation forces of rod-coils with different size (A(5)D(3)) and the same size (A(5)B(3)) segments. Results indicate that the excluded volume effect from the coil part determines the solvation force profiles of two rod-coil brushes at strong surface energy. In addition, owing to the vacuum effect, the weak attraction around the classical contact of the rod-coil brushes is also observed. In short, the present theory can be easily applied to the other architecture polymers containing different size segments. It is expected that the calculation results in this work could provide useful reference to select the rod-coils as stabilizer for the protection of surfaces or the colloidal stabilization.  相似文献   

3.
The potential of mean force for uncharged macroparticles suspended in a fluid confined by a wall or a narrow pore is computed for solvent-wall and solvent-macroparticle interactions with attractive forces. Bridge functions taken from Rosenfeld's density-functional theory are used in the reference hypernetted chain closure of the Ornstein-Zernike integral equations. The quality of this closure is assessed by comparison with simulation. As an illustration, the role of solvation forces is investigated. When the "residual" attractive tails are given a range appropriate to "hard sphere-like" colloids, the unexpected role of solvation forces previously observed in bulk colloids is confirmed in the confinement situation.  相似文献   

4.
于波  郭峰 《高分子科学》2015,33(1):163-172
We directly monitor the absolute separation profiles that function as film thickness between a single glass disk and the charged polyelectrolyte brushes decorated steel slider in water using a home-made slider-on-disk apparatus, which reflects the structural conformation variations and interactions of polymer brushes under externally applied pressure, in addition to probing the relative variation of friction forces under different applied loads and sliding velocities. We find that the polyelectrolyte brushes modified surfaces can sustain high pressure and have extremely low friction coefficients(around 0.006 at pressures of 0.13 MPa; 0.5-0.6 without brushes). The water-lubrication characteristics are correlated to the structural conformation changes of the polyelectrolyte brushes that are mainly governed by electrostatic interactions and the osmotic pressure of counterions inside the polymer chains, which can be used to support and distribute the normal pressure. The apparent thickness of the brush decreases with the increase of loading forces, an increase in the ionic strength causes the polymer chains collapse, and the friction forces increase. This fundamental research is of great importance to understand the mechanical and structural properties of polyelectrolyte brushes and their influences on the tribological behaviors, and helps to design friction/lubrication-controlled surface/interface by taking advantage of polyelectrolyte brushes.  相似文献   

5.
6.
Polyelectrolyte brushes were built on mica by anchoring polystyrene-poly(acrylic acid) (PS-b-PAA) diblock copolymers at a controlled surface density in a polystyrene monolayer covalently attached to OH-activated mica surfaces. Compared to physisorbed polymer brushes, these irreversibly attached charged brushes allow the polymer grafting density to remain constant upon changes in environmental conditions (e.g., pH, salt concentration, compression, and shear). The normal interaction and friction forces as a function of surface separation distance and at different concentrations of added salt (NaCl) were investigated using a surface forces apparatus. The interaction force profiles were completely reversible both on loading and receding and were purely repulsive. For a constant polymer grafting density, the influence of the polyelectrolyte charges and the Debye screening effect on the overall interaction forces was investigated. The experimental interaction force profiles agree very well with scaling models developed for neutral and charged polymer brushes. The variation of the friction force between two PAA brushes in motion with respect to each other as a function of surface separation distance appeared to be similar to that observed with neutral brushes. This similarity suggests that the increase in friction is associated with an increase in mutual interpenetration upon compression as observed with neutral polymers. The effect of the PAA charges and added ions was more significant on the repulsive normal forces than on the friction forces. The reversible characteristics of the normal force profiles and friction measurements confirmed the strong attachment of the PAA brushes to the mica substrate. High friction coefficients (ca 0.3) were measured at relatively high pressures (40 atm) with no surface damage or polymer removal.  相似文献   

7.
We use a simple two-order parameter model to describe the interaction between the brushes of polymers terminally attached to flat surfaces immersed in a supercritical solvent. Our approach makes it possible to take into account the high compressibility of the supercritical solvent, which proves to give a significant contribution to the disjoining force acting between polymer brushes. Our theory explains why the interaction between brushes can change from repulsive to attractive with decreasing solvent density. This theoretical finding is verified by making a comparison with recent computer simulations. A reasonably good agreement between the results of the present theory and the simulations is found.  相似文献   

8.
Molecular dynamics is utilized to simulate solvation forces between two nanoparticles immersed in liquid n-decane. Three types of solvophilic nanoparticles are investigated with sizes in the 1-6 nm range: small and large amorphous spheres and crystalline cubes. We find that the solvation forces are negligible for the small spheres, which have diameters comparable to the end-to-end distance of all-trans decane, and we attribute this to the inability of the small spheres to induce decane ordering in the interparticle gap. The cubic nanoparticles (and to a lesser extent, the large spheres) are able to induce the formation of solidlike, n-decane layers in their gap for certain nanoparticle separations, and the transition between layered and disordered structures leads to solvation forces that oscillate between repulsion and attraction as the nanoparticle separation is varied. We find that the Derjaguin approximation [B. V. Derjaguin, Kolloid-Z. 69, 155 (1934)] is not effective at describing the dependence of the solvation forces on nanoparticle size and shape-contrasting results from a previous study involving these nanoparticles in Lennard-Jones solvent [Y. Qin and K. A. Fichthorn, J. Chem. Phys. 119, 9745 (2003)]. In particular, we find that for decane, the magnitude of the repulsive solvation forces is sensitive to nanoparticle size and shape, a phenomenon we attribute to the size and rigid-rod structure of n-decane, which makes its ordering in the interparticle gap sensitive to the size and the surface roughness of the nanoparticles.  相似文献   

9.
10.
A catechol-containing macroinitiator has been designed for the surface-initiated atom transfer radical polymerization (SI-ATRP) from various substrates at ambient temperature. Temperature-sensitive poly(N-isopropyl acrylamide) (PNIPAM) brushes were successfully grafted from a range of substrates surfaces, including metals and polyimides, via SI-ATRP using the resulting macroinitiator, which were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements, and atomic force microscopy (AFM). Effects of the temperature response behavior of PNIPAM brushes on the water contact angles and the impedance of the modified surfaces were also exhibited. The self-assembled film of macroinitiator and the resulting polymer brushes were both stable to soaking of basic solvents, and the brushes did not show any exfoliation or delamination even after 2 h of ultrasonic test. The advantages of the macroinitiator in strong interactions with surfaces and high stability and convenience make it possible to modify the native materials with polymer brushes in a convenient and nondestructive way. Importantly, the macroinitiator is compatible with microcontact printing, and patterned polymer brushes on Ti plate were demonstrated by microcontact printing of BrDOPAMA and the following SI-ATRP.  相似文献   

11.
The solvation force of a simple fluid confined between identical planar walls is studied in two model systems with short ranged fluid-fluid interactions and long-ranged wall-fluid potentials decaying as -Az(-p),z--> infinity, for various values of p. Results for the Ising spins system are obtained in two dimensions at vanishing bulk magnetic field h=0 by means of the density-matrix renormalization-group method; results for the truncated Lennard-Jones (LJ) fluid are obtained within the nonlocal density functional theory. At low temperatures the solvation force f(solv) for the Ising film is repulsive and decays for large wall separations L in the same fashion as the boundary field f(solv) approximately L(-p), whereas for temperatures larger than the bulk critical temperature f(solv) is attractive and the asymptotic decay is f(solv) approximately L(-(p+1)). For the LJ fluid system f(solv) is always repulsive away from the critical region and decays for large L with the the same power law as the wall-fluid potential. We discuss the influence of the critical Casimir effect and of capillary condensation on the behavior of the solvation force.  相似文献   

12.
This critical review summarizes recent developments in the fabrication of patterned polymer brushes. As top-down lithography reaches the length scale of a single macromolecule, the combination with the bottom-up synthesis of polymer brushes by surface-initiated polymerization becomes one main avenue to design new materials for nanotechnology. Recent developments in surface-initiated polymerizations are highlighted along with diverse strategies to create patterned polymer brushes on all length scales based on irradiation (photo- and interference lithography, electron-beam lithography), mechanical contact (scanning probe lithography, soft lithography, nanoimprinting lithography) and on surface forces (capillary force lithography, colloidal lithography, Langmuir-Blodgett lithography) (116 references).  相似文献   

13.
A series of triblock nonionic surfactants with different Propylene oxide and ethylene oxide chain lengths were synthesized. The triblock nonionic surfactants and poly(ethylene glycols) with different molecular weight were used, to find the effects of polymer chain length and size of the micelles on the cloud point of the surfactants. Two possible models are considered on the basis of cloud point changes of the solutions, to describe the polymer- surfactant interactions. One model suggests that flocculation depletion for the polymer chains exist between two regular micelles. This provides the driving force for the neighboring micelles to approach each other and destabilize the colloidal system. The flocculation effect is more important for polymers with a shorter chain block the approach of the micelles, since there is no typical polymer-surfactant association formed but just simple small molecule associations in which the steric and solvation effects of the polymer chains make the inter-micelles interactions repulsive. The other model considers that intra-chain micelles of polysoap are formed among the surfactant monomers and long polymer chains. The bridging attraction between two intra-chain micelles in such structures can enhance the collisions among the micelles, due to the exchange of amphiphilic monomers among the neighboring micelles.  相似文献   

14.
Polystyrene (PS) brushes were prepared on oxide passivated silicon by the surface initiated polymerization (SIP) technique. From an AIBN-type free radical initiator, which was silanized and immobilized on silicon wafers, styrene brushes were directly polymerized and grafted from the surface. The formation of the initiator monolayer and, subsequently, the polymer brush on the surface were monitored by X-ray photoelectron spectroscopy (XPS) and ellipsometry. Friction force measurements were performed by atomic force microscopy (AFM), using a 5 microm SiO2 colloidal sphere tip and under systematically varied solvent environments (nonpolar to polar), to demonstrate the dependence of brush lubricity on solvation. The relative uptake of solvents in the PS brush was determined by quartz crystal microbalance (QCM), and it correlates well with friction data. It is surmised that, in poor solvent environments, the polymer brush exists in a collapsed conformation, giving rise to the higher observed friction response.  相似文献   

15.
Fluid adsorption on nonplanar and heterogeneous substrates is studied using a simple interfacial model. For systems with short-ranged forces, we find that, by tuning the local strength of the substrate potential, it is possible to find the exact equilibrium interfacial profile as a functional of the wall shape psi x. The tuning of the local substrate potential takes the form of a gauge condition theta x=+/-psi x, where theta x can be interpreted as a local effective contact angle. For wedgelike geometries with asymptotic tilt angle alpha, the midpoint interfacial height and roughness satisfy the same covariance relations previously found for simple linear wedges. For troughlike geometries satisfying the gauge condition, covariance is also found for the two-point correlation function. Predictions for more microscopic Landau and Ising models are also discussed.  相似文献   

16.
Perfluorocarbon thin films and polymer brushes were formed on stainless steel 316 L (SS316L) to control the surface properties of the metal oxide. Substrates modified with the films were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), contact angle analysis, atomic force microscopy (AFM), and cyclic voltammetry (CV). Perfluorooctadecanoic acid (PFOA) was used to form thin films by self-assembly on the surface of SS316L. Polypentafluorostyrene (PFS) polymer brushes were formed by surface-initiated polymerization using SAMs of 16-phosphonohexadecanoic acid (COOH-PA) as the base. PFOA and PFS were effective in significantly reducing the surface energy and thus the interfacial wetting properties of SS316L. The SS316L control exhibited a surface energy of 38 mN/m compared to PFOA and PFS modifications, which had surface energies of 22 and 24 mN/m, respectively. PFOA thin films were more effective in reducing the surface energy of the SS316L compared to PFS polymer brushes. This is attributed to the ordered PFOA film presenting aligned CF(3) terminal groups. However, PFS polymer brushes were more effective in providing corrosion protection. These low-energy surfaces could be used to provide a hydrophobic barrier that inhibits the corrosion of the SS316L metal oxide surface.  相似文献   

17.
Micro- and nanopatterns of thermosensitive poly(N-isopropylacrylamide) brush on gold substrate were prepared by using chemical lithography combined with surface-initiated atom transfer radical polymerization. Self-assembled monolayers of 4'-nitro-1, 1'-biphenyl-4-thiol were structured by chemical lithography which produced cross-linked 4'-amino-1,1'-biphenyl-4-thiol monolayer within a nitro-terminated matrix. The terminal amino groups in monolayers were bounded with the surface initiator bromoisobutyryl bromide. After polymerization, the smallest size can reach to 70-nm line width and dots. The thermosensitivity of poly(N-isopropylacrylamide) brushes is demonstrated by contact angle measurement and fluid atomic force microscopy. This fabrication approach allows creating spatially defined polymer patterns and provides a simple and versatile method to construct complex micro- and nanopatterned polymer brushes with spatial and topographic control in a single step.  相似文献   

18.
Two fundamental challenges of simulating biologically relevant systems are the rapid calculation of the energy of solvation and the trajectory length of a given simulation. The Generalized Born model with a Simple sWitching function (GBSW) addresses these issues by using an efficient approximation of Poisson–Boltzmann (PB) theory to calculate each solute atom's free energy of solvation, the gradient of this potential, and the subsequent forces of solvation without the need for explicit solvent molecules. This study presents a parallel refactoring of the original GBSW algorithm and its implementation on newly available, low cost graphics chips with thousands of processing cores. Depending on the system size and nonbonded force cutoffs, the new GBSW algorithm offers speed increases of between one and two orders of magnitude over previous implementations while maintaining similar levels of accuracy. We find that much of the algorithm scales linearly with an increase of system size, which makes this water model cost effective for solvating large systems. Additionally, we utilize our GPU‐accelerated GBSW model to fold the model system chignolin, and in doing so we demonstrate that these speed enhancements now make accessible folding studies of peptides and potentially small proteins. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Using an atomic force microscope (AFM), we have investigated the interaction forces exerted by latex particles bearing densely grafted polymer brushes consisting of poly(N,N-dimethylacrylamide) (PDMA), poly(methoxyethylacrylamide) (PMEA), poly(N-isopropylacrylamide) (PNIPAM), and PMEA-b-PNIPAM in aqueous media (good solvent). The brushes were prepared by controlled surface-initiated atom transfer radical polymerization, and the hydrodynamic thicknesses were measured by dynamic light scattering. The molecular weight (Mn), grafting density (sigma), and polydispersity (PDI) of the brushes were determined by gel permeation chromatography and multiangle laser light scattering after cleaving the polymer from the latex surface by hydrolysis. Force profiles of PDMA (0.017 nm(-2) < or = sigma < or = 0.17 nm-2) and PMEA (sigma = 0.054 nm-2) brushes were purely repulsive upon compression, with forces increasing with Mn and a, as expected, due to excluded volume interactions. At a sufficiently low grafting density (sigma = 0.012 nm-2), PDMA exhibited a long-range exponentially increasing attractive force followed by repulsion upon further compression. The long-range attractive force is believed to be due to bridging between the free chain ends and the AFM tip. The PNIPAM brush exhibited a bridging force at a grafting density of 0.037 nm(-2), a value lower than the sigma needed to induce bridging in the PDMA brush. Bridging was therefore found to depend on grafting density as well as on the nature of the monomer. The grafting densities of these polymers were larger than those typically associated with bridging. Bridging interactions were used to confirm the presence of PNIPAM in a block copolymer PMEA-b-PNIPAMA brush given that the original PMEA homopolymer brush produced a purely repulsive force. The attractive force was first detected in the block copolymer brush at a separation that increased with the length of the PNIPAM block.  相似文献   

20.
《Tetrahedron letters》1995,36(18):3185-3188
MM2 and AMBER force fields in both vacuum and GB/SA solvation model were examined to find the most effective method for elucidating the conformational properties of the trisaccharide 2, which is essential to the elicitor activity of hexa-β-D-glucopyranosyl-D-glucitol (1). The NMR studies reveal that the combination of AMBER force field and GB/SA solvation treatment is quite effective in analyzing the conformation of oliosaccharide in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号