首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过Domino脱HCl/Pd(OAc)2催化的Heck反应实现了β-氯代烷基芳基酮、酯和酰胺与卤代芳烃的交叉偶联反应,高效合成了查尔酮类化合物。利用原位生成烯酮为中间体进行反应的策略,减少副反应的发生,从而提高反应的效率。该方法对各种官能团的容忍性好,为从氯代烷烃出发直接合成查尔酮类化合物提供了一条新途径。  相似文献   

2.
The palladium-catalyzed cross-coupling reaction of organoborate compounds with organic electrophiles is very attractive method for organic synthesis. These coupling reactions offer a powerful tool for the formation of carbon-carbon bonds. 1 In the past few years a number of methods have been devoloped which permit the use of organoboron compounds that are thermally stable and inert to water and oxygen. Further these coupling reactions have been used successfully for the synthesis of natural products, pharmaceutical intermediates, and combinatiorial libraries of organic compounds. Sodium tetraphenylborate is a stable, non-toxic and has been used as a phenylating agent affording σ-phenyl complexes of various transition metals by the transfer of a phenyl group from boron to metals. Phenyl transfer from this reagent to some organopalladium complexes making a new carbon-carbon bond has also been noted. Uemura and Huang reported respectively that Pd(0) or Si-P-Pd(0)-catalyzed reaction of acyl chlorides and NaBPh4 proceeded in THF to give the corresponding phenyl ketones. However, only one phenyl group out of four in the borate was available for transfer. Recently, Bumagin reported that the cross-coupling reaction of NaBPh4 with acyl chlorides in the presence of Pd(OAc)2 and Na2CO3 in dry or aqueous acetone to give high yields of unsymmetric ketones. However, the reaction time is long(1-6 h).  相似文献   

3.
Wolfe JP  Ney JE 《Organic letters》2003,5(24):4607-4610
[reaction: see text] A new method for the synthesis of N-tosylketimines via the palladium-catalyzed isomerization of N-tosylaziridines is described. The mild reaction conditions tolerate the presence of a variety of functional groups including ketones, esters, and acetals. The reactions are believed to proceed via the oxidative addition of the aziridine to Pd(0) and represent the first examples of transformations involving Pd(0)-mediated oxidative additions of aziridines that do not proceed through allylpalladium intermediates.  相似文献   

4.
Ethanol can be used as a platform molecule for synthesizing valuable chemicals and fuel precursors. Direct synthesis of C5+ ketones, building blocks for lubricants and hydrocarbon fuels, from ethanol was achieved over a stable Pd‐promoted ZnO‐ZrO2 catalyst. The sequence of reaction steps involved in the C5+ ketone formation from ethanol was determined. The key reaction steps were found to be the in situ generation of the acetone intermediate and the cross‐aldol condensation between the reaction intermediates acetaldehyde and acetone. The formation of a Pd–Zn alloy in situ was identified to be the critical factor in maintaining high yield to the C5+ ketones and the stability of the catalyst. A yield of >70 % to C5+ ketones was achieved over a 0.1 % Pd‐ZnO‐ZrO2 mixed oxide catalyst, and the catalyst was demonstrated to be stable beyond 2000 hours on stream without any catalyst deactivation.  相似文献   

5.
Mixtures of Pd(2)(dba)(3) or Pd(OAc)(2) and BINAP catalyze the cross-coupling of amines with a variety of aryl bromides. Primary amines are arylated in high yield, and certain classes of secondary amines are also effectively transformed. The process tolerates the presence of several functional groups including methyl and ethyl esters, enolizable ketones, and nitro groups provided that cesium carbonate is employed as the base. Most reactions proceed to completion with 0.5-1.0 mol % of the palladium catalyst; in some cases, catalyst levels as low as 0.05 mol % Pd may be employed. Reactions are considerably faster if Pd(OAc)(2) is employed as the precatalyst, and the order in which reagents are added to the reaction has a substantial effect on reaction rate. It is likely that the catalytic process proceeds via bis(phosphine)palladium complexes as intermediates. These complexes are less prone to undergo undesirable side reactions which lead to diminished yields or catalyst deactivation than complexes of the corresponding monodentate triarylphosphines.  相似文献   

6.
A redox‐neutral palladium(II)‐catalyzed conversion of aryl, heteroaryl, and alkenyl boronic acids into sulfinate intermediates, and onwards to sulfones and sulfonamides, has been realized. A simple Pd(OAc)2 catalyst, in combination with the sulfur dioxide surrogate 1,4‐diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO), is sufficient to achieve rapid and high‐yielding conversion of the boronic acids into the corresponding sulfinates. Addition of C‐ or N‐based electrophiles then allows conversion into sulfones and sulfonamides, respectively, in a one‐pot, two‐step process.  相似文献   

7.
A redox‐neutral palladium(II)‐catalyzed conversion of aryl, heteroaryl, and alkenyl boronic acids into sulfinate intermediates, and onwards to sulfones and sulfonamides, has been realized. A simple Pd(OAc)2 catalyst, in combination with the sulfur dioxide surrogate 1,4‐diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO), is sufficient to achieve rapid and high‐yielding conversion of the boronic acids into the corresponding sulfinates. Addition of C‐ or N‐based electrophiles then allows conversion into sulfones and sulfonamides, respectively, in a one‐pot, two‐step process.  相似文献   

8.
Pd‐catalyzed oxidative coupling reaction was of great importance in the aromatic C? H activation and the formation of new C? O and C? C bonds. Sanford has pioneered practical, directed C? H activation reactions employing Pd(OAc)2 as catalyst since 2004. However, until now, the speculated reactive Pd(IV) transient intermediates in these reactions have not been isolated or directly detected from reaction solution. Electrospray ionization tandem mass spectrometry (ESI‐MS/MS) was used to intercept and characterize the reactive Pd(IV) transient intermediates in the solutions of Pd(OAc)2‐catalyzed oxidative coupling reactions. In this study, the Pd(IV) transient intermediates were detected from the solution of Pd(OAc)2‐catalyzed oxidative coupling reactions by ESI‐MS and the MS/MS of the intercepted Pd(IV) transient intermediate in reaction system was the same with the synthesized authentic Pd(IV) complex. Our ESI‐MS(/MS) studies confirmed the presence of Pd(IV) reaction transient intermediates. Most interestingly, the MS/MS of Pd(IV) transient intermediates showed the reductive elimination reactivity to Pd(II) complexes with new C? O bond formation into product in gas phase, which was consistent with the proposed reactivity of the Pd(IV) transient intermediates in solution.  相似文献   

9.
α,β-Unsaturated carbonyl compounds are versatile intermediates in the synthesis of pharmaceuticals and biologically active compounds. Here, we report the discovery and application of Pd(DMSO)(2)(TFA)(2) as a catalyst for direct dehydrogenation of cyclohexanones and other cyclic ketones to the corresponding enones, using O(2) as the oxidant. The substrate scope includes heterocyclic ketones and several natural-product precursors.  相似文献   

10.
钯配合物催化烯烃氧化合成酮类物质的研究进展   总被引:1,自引:0,他引:1  
本文系统地评述了钯配合物催化烯烃氧化合成酮类物质的研究进展。综述了改进Wacker 类催化剂催化活性的几种方法。总结了烯烃氧化合成酮类物质反应的几种典型催化体系及其作用机理。着重介绍了Pd (Ⅱ) HPA (杂多酸)、Pd (Ⅱ) FePc (酞菁铁)、Pd (Ⅱ) HQ (氢醌) FePc、Pd (Ⅱ) HQHPA、Pd (Ⅱ) CuSO4 HPA 等Wacker 类催化体系在烯烃氧化合成酮类物质中的应用; 对Pd (Ⅱ) LCoNO2、PdCl2(MeCN)2 CuCl、Pd (OAc)2 吡啶、氟两相等非Wacker 类催化体系在烯烃氧化合成酮类物质中的应用也作了讨论。  相似文献   

11.
Allylation of α,β-unsaturated aldehydes and cyclic ketones promoted by Pd/In transmetallation processes has been studied. The unsaturated aldehydes underwent regioselective 1,2-addition to afford secondary homoally alcohols. The reactions have been performed using Pd(OAc)2/PPh3 as catalytic system and metallic indium affording the products in good yields. The same transformation with unsaturated ketones proved to be less efficient, while saturated cyclic ketones delivered generally excellent yields in the presence of CuI. In these latter processes the presence of a distal heteroatom influences the reaction rate.  相似文献   

12.
A Pd(II)-catalyzed desulfitative arylation protocol between sulfonamides and sodium arylsulfinates was herein reported. The direct arylation reaction was successfully achieved by a Pd(II)/Ag(I)-mediated system without participation of any external ligands with a release of SO2. And different N-aryl sulfonamides were obtained readily in up to 86% yields, exhibiting good functional groups tolerance (25 examples).  相似文献   

13.
A computational study has been performed to determine the mechanism of the key steps of Pd-catalyzed domino reactions in which C(sp2)-C(sp2) are formed from aryl and alkenyl halides. DFT calculations were done on model complexes of the proposed intermediates, with PH3 and H2O as ancillary ligands, to explore two possible mechanisms: the oxidative addition of aryl or alkenyl halides to palladacycles to give Pd(IV) intermediates, and the transmetalation-type reaction of aryl or alkenyl ligands between two Pd(II) centers, a palladacycle, and a Pd(II) complex formed by oxidative addition of aryl or alkenyl halides to Pd0. We have shown that oxidative addition of iodoethylene to Pd0 precursors is more favorable than oxidative addition to Pd(II) palladacycles, whereas transmetalation-type reactions between Pd(II) complexes are facile. Similar results were obtained with iodobenzene instead of iodoethylene and formamide as the ancillary ligand. These results suggest that Pd(IV) intermediates are not involved in these reactions.  相似文献   

14.
Ethanol can be used as a platform molecule for synthesizing valuable chemicals and fuel precursors. Direct synthesis of C5+ ketones, building blocks for lubricants and hydrocarbon fuels, from ethanol was achieved over a stable Pd-promoted ZnO-ZrO2 catalyst. The sequence of reaction steps involved in the C5+ ketone formation from ethanol was determined. The key reaction steps were found to be the in situ generation of the acetone intermediate and the cross-aldol condensation between the reaction intermediates acetaldehyde and acetone. The formation of a Pd–Zn alloy in situ was identified to be the critical factor in maintaining high yield to the C5+ ketones and the stability of the catalyst. A yield of >70 % to C5+ ketones was achieved over a 0.1 % Pd-ZnO-ZrO2 mixed oxide catalyst, and the catalyst was demonstrated to be stable beyond 2000 hours on stream without any catalyst deactivation.  相似文献   

15.
Burton G  Cao P  Li G  Rivero R 《Organic letters》2003,5(23):4373-4376
[reaction: see text] An efficient intermolecular N-arylation of sulfonamides with aryl chlorides is realized using palladium catalysis. The reaction proceeds under microwave irradiation at 180-200 degrees C for 10 min with 2-10 mol % of Pd catalyst in 32-85% isolated yields.  相似文献   

16.
We report here results of our density functional theory based computational studies of the electronic structure of the Pd-Co alloy electrocatalysts and energetics of the oxygen reduction reaction (ORR) on their surfaces. The calculations have been performed for the (111) surfaces of pure Pd, Pd(0.75)Co(0.25) and Pd(0.5)Co(0.5) alloys, as well as of the surface segregated Pd/Pd(0.75)Co(0.25) alloy. We find the hybridization of dPd and dCo electronic states to be the main factor controlling the electrocatalytic properties of Pd/Pd(0.75)Co(0.25). Namely the dPd-dCo hybridization causes low energy shift of the surface Pd d-band with respect to that for Pd(111). This shift weakens chemical bonds between the ORR intermediates and the Pd/Pd(0.75)Co(0.25) surface, which is favorable for the reaction. Non-segregated Pd(0.75)Co(0.25) and Pd(0.5)Co(0.5) surfaces are found to be too reactive for ORR due to bonding of the intermediates to the surface Co atoms. Analysis of the ORR free energy diagrams, built for the Pd and Pd/Pd(0.75)Co(0.25), shows that the co-adsorption of the ORR intermediates and water changes the ORR energetics significantly and makes ORR more favorable. We find the onset ORR potential estimated for the configurations with the O-OH and OH-OH co-adsorption to be in very good agreement with experiment. The relevance of this finding to the real reaction environment is discussed.  相似文献   

17.
An elegant synthesis of linear acetylchromenes, viz eupatoriochromene, methyleupatoriochromene (encecalin), evodionol and methlevodionol, has been achieved by blocking the reactive position position C-3 of the appropriate ketones with an iodo group, prenylation with 3-chloro-3-methylbut-1-yne and subsequent cyclisation. Regiospecific introduction of C-prenyl group in the less reactive C-5 has been achieved by the reaction of the appropriate 3-iodo ketones with 2-methylbut-3-en-2-ol. The 5-prenyl ketones are also essential intermediates for the synthesis of linear acetylchromenes.  相似文献   

18.
We report herein a new process, which we call contemporaneous dual catalysis, that selectively couples two highly reactive catalytic intermediates while overcoming competing trapping by stoichiometric reactive species also present in the reaction. The reaction proceeds via the convergence of a vanadium-catalyzed propargylic rearrangement and a palladium-catalyzed allylic alkylation. It generates a variety of α-allylated α,β-unsaturated ketones, which are not readily accessible by other means. Notably, this dual catalysis is achieved using low catalyst loadings (1.0 mol % [Pd], 1.5 mol % [V]) and gives good to excellent yields (up to 98%) of the desired products.  相似文献   

19.
The aminophosphine-based pincer complexes [C6H3-2,6-(XP(piperidinyl)2)2Pd(Cl)] (X=NH 1; X=O 2) are readily prepared from cheap starting materials by sequential addition of 1,1',1'-phosphinetriyltripiperidine and 1,3-diaminobenzene or resorcinol to solutions of [Pd(cod)(Cl)2] (cod=cyclooctadiene) in toluene under N2 in "one pot". Compounds 1 and 2 proved to be excellent Heck catalysts and allow the quantitative coupling of several electronically deactivated and sterically hindered aryl bromides with various olefins as coupling partners at 140 degrees C within very short reaction times and low catalyst loadings. Increased reaction temperatures also enable the efficient coupling of olefins with electronically deactivated and sterically hindered aryl chlorides in the presence of only 0.01 mol % of catalyst. The mechanistic studies performed rule out that homogeneous Pd 0 complexes are the catalytically active forms of 1 and 2. On the other hand, the involvement of palladium nanoparticles in the catalytic cycle received strong experimental support. Even though pincer-type Pd IV intermediates derived from 1 (and 2) are not involved in the catalytic cycle of the Heck reaction, their general existence as reactive intermediates (for example, in other reactions) cannot be excluded. On the contrary, they were shown to be thermally accessible. Compounds 1 and 2 show a smooth halide exchange with bromobenzene to yield their bromo derivatives in DMF at 100 degrees C. Experimental observations revealed that the halide exchange most probably proceeded via pincer-type Pd IV intermediates. DFT calculations support this hypothesis and indicated that aminophosphine-based pincer-type Pd IV intermediates are generally to be considered as reactive intermediates in reactions with aryl halides performed at elevated temperatures.  相似文献   

20.
Novel Pd(2) (6+) compounds have been synthesized in high yield. These compounds and their Pd(2) (4+) counterparts as synthetic precursors mediate the diboration of vinylarenes and aliphatic 1-alkenes, and under mild and basic reaction conditions they produce a variety of 1,2-diboronate esters with excellent conversions and chemoselectivities. The presence of bis(catecholato)diboron (B(2)cat(2)) favours the reduction of Pd(III) to Pd(II), while the catalytic precursor of Pd(II) is transformed into Pd(0)-nanoparticles. An "in situ" catalytic tandem reaction has been designed to transform the diboronate intermediates into the monoarylated product, which after oxidative workup, provides the carbohydroxylated adduct. Eventually, the same catalyst performs both sequences with total conversion from the alkene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号