首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the self-adjointness of Eringen’s nonlocal elasticity is investigated based on simple one-dimensional beam models. It is shown that Eringen’s model may be nonself-adjoint and that it can result in an unexpected stiffening effect for a cantilever’s fundamental vibration frequency with respect to increasing Eringen’s small length scale coefficient. This is clearly inconsistent with the softening results of all other boundary conditions as well as the higher vibration modes of a cantilever beam. By using a (discrete) microstructured beam model, we demonstrate that the vibration frequencies obtained decrease with respect to an increase in the small length scale parameter. Furthermore, the microstructured beam model is consistently approximated by Eringen’s nonlocal model for an equivalent set of beam equations in conjunction with variationally based boundary conditions (conservative elastic model). An equivalence principle is shown between the Hamiltonian of the microstructured system and the one of the nonlocal continuous beam system. We then offer a remedy for the special case of the cantilever beam by tweaking the boundary condition for the bending moment of a free end based on the microstructured model.  相似文献   

2.
Yield stress fluid flows occur in a great many operations and unit processes within the oil and gas industry. This paper reviews this usage within reservoir flows of heavy oil, drilling fluids and operations, wellbore cementing, hydraulic fracturing and some open-hole completions, sealing/remedial operations, e.g., squeeze cementing, lost circulation, and waxy crude oils and flow assurance, both wax deposition and restart issues. We outline both rheological aspects and relevant fluid mechanics issues, focusing primarily on yield stress fluids and related phenomena.  相似文献   

3.
4.
Cai  Zuo-Wei  Huang  Li-Hong  Wang  Zeng-Yun 《Nonlinear dynamics》2019,98(1):341-357
Nonlinear Dynamics - Based on Krasnoselskii’s fixed point theorem of set-valued maps type, this paper studies the existence and multiplicity of periodic positive solutions for delayed...  相似文献   

5.
Zhang  Zhi-Yong  Lin  Zhi-Xiang  Guo  Lei-Lei 《Nonlinear dynamics》2022,108(2):1641-1653
Nonlinear Dynamics - In this paper, we introduce a new definition of variable-order fractional derivative via the Caputo fractional derivative in the sense of Hadamard’s finite-part integral....  相似文献   

6.
Hill (1978) proposed a natural extension of Hooke’s law to finite deformations. With all Seth-Hill finite strains, Hill’s natural extension presents a broad class of compressible hyperelastic materials over the whole deformation range. We show that a number of known Hookean type finite hyperelasticity models are included as particular cases in Hill’s class and that Bell’s and Ericksen’s constraints may be derived as natural consequences from Hill’s class subjected to internal constraints. Also we present a unified study of finite bending problems for elastic Hill materials. To date exact results are available for certain particular classes of compressible elastic materials, which do not cover Hill’s class. Here, with a novel idea of circumventing the strong nonlinearity we show that it is possible to derive exact solutions in unified form for the whole class of elastic Hill materials. Reduced results are also given for cases subjected to internal constraints.  相似文献   

7.
8.
To get a clear picture of the pulsatile nature of blood flow and its role in the pathogenesis of atherosclerosis, a comparative study of blood flow in large arteries is carried out using the two widely used models, McDonald's and Burton's models, for the pressure gradient. For both models, the blood velocity in the lumen is obtained analytically. Elaborate investigations on the wall shear stress (WSS) and oscillatory shear index (OSI) are carried out. The results are in good agreement with the available data in the literature. The superiority of McDonald's model in capturing the pulsatile nature of blood flow, especially the OSI, is highlighted. The present investigation supports the hypothesis that not only WSS but also OSI are the essential features determining the pathogenesis of atherosclerosis. Finally, by reviewing the limitations of the present investigation, the possibility of improvement is explored.  相似文献   

9.
10.
Yu  B. S.  Xu  S. D.  Jin  D. P. 《Nonlinear dynamics》2020,101(2):1233-1244
Nonlinear Dynamics - This paper describes the chaos behavior of an in-plane tethered satellite system induced by atmospheric drag and the Earth’s oblateness. A commonly used model, the...  相似文献   

11.
In this paper we investigate the role of Parodi’s relation in the well-posedness and stability of the general Ericksen–Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen–Leslie system through an appropriate energy variational approach under Parodi’s relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen–Leslie system under the assumption that the viscosity μ 4 is sufficiently large. Finally, under Parodi’s relation, we show the global well-posedness and Lyapunov stability for the Ericksen–Leslie system near local energy minimizers. The connection between Parodi’s relation and linear stability of the Ericksen–Leslie system is also discussed.  相似文献   

12.
In this paper, we develop a helicopter??s formation flying model with telegraph poles and electrical wire to study each helicopter??s flying behavior in the low airspace. The numerical results show that the proposed model can qualitatively describe the influences of the telegraph poles and electrical wire on the helicopter??s formation flying behavior in the low airspace and that the effects will be related to each helicopter??s initial conditions.  相似文献   

13.
14.
15.
16.
In this study, a new Green??s function and a new Green-type integral formula for a 3D boundary value problem (BVP) in thermoelastostatics for a quarter-space are derived in closed form. On the boundary half-planes, twice mixed homogeneous mechanical boundary conditions are given. One boundary half-plane is free of loadings and the normal displacements and the tangential stresses are zero on the other one. The thermoelastic displacements are subjected by a heat source applied in the inner points of the quarter-space and by mixed non-homogeneous boundary heat conditions. On one of the boundary half-plane, the temperature is prescribed and the heat flux is given on the other one. When the thermoelastic Green??s function is derived, the thermoelastic displacements are generated by an inner unit point heat source, described by ??-Dirac??s function. All results are obtained in elementary functions that are formulated in a special theorem. As a particular case, when one of the boundary half-plane of the quarter-space is placed at infinity, we obtain the respective results for half-space. Exact solutions in elementary functions for two particular BVPs for a thermoelastic quarter-space and their graphical presentations are included. They demonstrate how to apply the obtained Green-type integral formula as well as the derived influence functions of an inner unit point body force on volume dilatation to solve particular BVPs of thermoelasticity. In addition, advantages of the obtained results and possibilities of the proposed method to derive new Green??s functions and new Green-type integral formulae not for quarter-space only, but also for any canonical Cartesian domain are also discussed.  相似文献   

17.
This article presents in a closed form new influence functions of a unit point heat source on the displacements for three boundary value problems of thermoelasticity for a half-plane. We also obtain the corresponding new integral formulas of Green’s and Poisson’s types that directly determine the thermoelastic displacements and stresses in the form of integrals of the products of specified internal heat sources or prescribed boundary temperature and constructed already thermoelastic influence functions (kernels). All these results are presented in terms of elementary functions in the form of three theorems. Based on these theorems and on derived early by author the general Green-type integral formula, we obtain in elementary functions new solutions to two particular boundary value problems of thermoelasticity for half-plane. The graphical presentation of the temperature and thermal stresses of one concrete boundary value problems of thermoelasticity for half-plane also is included. The proposed method of constructing thermoelastic Green’s functions and integral formulas is applicable not only for a half-plane, but also for many other two- and three-dimensional canonical domains of different orthogonal coordinate systems.  相似文献   

18.
Palmero  Faustino  Chacón  Ricardo 《Nonlinear dynamics》2022,108(3):2643-2654
Nonlinear Dynamics - The robustness of a chaos-suppressing scenario against potential mismatches is experimentally studied through the universal model of a damped, harmonically driven two-well...  相似文献   

19.
20.
Nonlinear Dynamics - Nonlinear dynamics of engineering systems has reached the stage of full maturity in which it makes sense to critically revisit its past and present in order to establish an...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号