首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new technique is proposed to obtain an approximate probability density for the response of a non-linear oscillator under Gaussian white noise excitations. The random excitations may be either multiplicative (also known as parametric) or additive (also known as external), or both. In this new technique, the original non-linear oscillator is replaced by another oscillator belonging to the class of generalized stationary potential for which the exact solution is obtainable. The replacement oscillator is selected on the basis that the average energy dissipation remains unchanged. Examples are given to illustrate the application of the new procedure. In one of the examples, the new procedure leads to a better approximation than that obtained by stochastic averaging.  相似文献   

2.
The method of weighted residuals is applied to the reduced Fokker-Planck equation associated with a non-linear oscillator, which is subjected to both additive and multiplicative Gaussian white noise excitations. A set of constraints are deduced for obtaining an approximate stationary probability density for the system response. One of the constraints coincides with the previously proposed criterion of dissipation energy balancing, and the others are useful for calculating the equivalent conservative force. It is shown that these constraints imply certain relationships among certain statistical moments; their imposition guarantees that such moments computed from the approximate probability density satisfy the corresponding exact equations derived from the original equation of motion. Moreover, the well-known procedure of stochastic linearization and its improved version of partial linearization are shown to be special cases of this scheme, and they are less accurate since the approximations are not chosen from the entire set of the solution pool of generalized stationary potential. Applications of the scheme are illustrated by examples, and its accuracy is substantiated by Monte Carlo simulation results.  相似文献   

3.
The stationary probability density function (PDF) solution of the responses of non-linear stochastic oscillators subjected to Poisson pulses is analyzed. The PDF solutions are obtained by the exponential-polynomial closure (EPC) method. To assess the effectiveness of the solution procedure numerically, non-linear oscillators are analyzed with different impulse arrival rates, degree of oscillator non-linearity and excitation intensity. Numerical results show that the PDFs obtained with the EPC method yield good agreement with those obtained from Monte Carlo simulation when the polynomial order is 4 or 6. It is also observed that the EPC procedure is the same as the equivalent linearization procedure under Gaussian white noise in the case of the polynomial order being 2.  相似文献   

4.
The aim of this paper is to develop a new method of analyzing the non-linear deflection behavior of an infinite beam on a non-linear elastic foundation. Non-linear beam problems have traditionally been dealt with by semi-analytical approaches that involve small perturbations or by numerical methods, such as the non-linear finite element method. In this paper, in contrast, a transformed non-linear integral equation that governs non-linear beam deflection behavior is formulated to develop a new method for non-linear solutions. The proposed method requires an iteration to solve non-linear problems, but is fairly simple and straightforward to apply. It also converges quickly, whereas traditional non-linear solution procedures are generally quite complex in application. Mathematical analysis of the proposed method is performed. In addition, illustrative examples are presented to demonstrate the validity of the method developed in the present study.  相似文献   

5.
A general method to obtain approximate solutions for the random response of non-linear systems subjected to both additive and multiplicative Gaussian white noises is presented. Starting from the concept of linearization, the proposed method of “Probabilistic Linearization” (PL) is based on the replacement of the Fokker–Planck equation of the original non-linear system with an equivalent one relative to a linear system subjected to additive excitation only. By means of the general scheme of the weighted residuals, the unknown coefficients of the equivalent system are determined. Assuming a Gaussian probability density function of the response process and by choosing the weighting functions in a suitable way, the equivalence of the proposed method, called “Gaussian Probabilistic Linearization” (GPL), with the “Gaussian Stochastic Linearization” (GSL) applied to the coefficients of the Itô differential rule is evidenced. In addition, the generalization of the proposed method, called “Generalized Gaussian Probabilistic Linearization” (GGPL), is presented. Numerical applications show as, varying the choice of the weighting functions, it is possible to obtain different linearizations, with a variable degree of accuracy. For the two examples considered, different suitable combinations of the weighting functions lead to different equivalent linear systems, all characterized by the exact solution in terms of variance.  相似文献   

6.
Nonlinear Dynamics - A novel statistical linearization technique is developed for determining approximately the response statistics and the power output of U-Oscillating Water Column (U-OWC) energy...  相似文献   

7.
A straightforward moving grid finite element method is developed to solve the one-dimensional coupled system of non-linear partial differential equations (PDEs) governing two- and three-phase flow in porous media. The method combines features from a number of self-adaptive grid techniques. These techniques are the equidistribution, the moving grid finite element and the local grid refinement/coarsening methods. Two equidistribution criteria, based on solution gradient and curvature, are employed and nodal distributions are computed iterativcly. Using the developed approach, an intermingle-free nodal distribution is guaranteed. The method involves examination of a single representative gradient to facilitate the application of moving grid algorithms to solve a non-linear coupled set of PDEs and includes a feature to limit mass balance error during nodal redistribution. The finite element part of the developed algorithm is verified against an existing finite difference model. A numerical simulation example involving a single-front two-phase flow problem is presented to illustrate model performance. Additional simulation examples are given in Part 2 of this paper. These examples include single and double moving fronts in two- and three-phase flow systems incorporating source/sink terms. Simulation sensitivity to the moving grid parameters is also explored in Part 2.  相似文献   

8.
9.
10.
A general framework encompassing both the (conventional) deformational and configurational settings of continuum mechanics is presented. A systematic application of balance principles over a migrating control volume in the undeformed configuration of the continuum body yields the system of governing equations in the bulk, on the surface and on a coherent interface within the continuum. The equations governing the response of the bulk agree with those of the conventional deformational approach. The localised balance equations are expressed in the configurational setting using a pull-back operator and reformulated in terms of the Eshelby stress. The configurational expression of the dissipation elucidates the energy loss associated with configurational changes. The general framework is introduced by considering the problem of coupled deformation, heat conduction and species diffusion within a geometrically non-linear continuum body intersected by a coherent interface. The nature of the coupling is emphasised throughout the presentation and via an example.  相似文献   

11.
基于Euler-Bernoulli梁理论,利用广义Hamilton原理推导得到弹性地基上转动功能梯度材料(FGM)梁横向自由振动的运动控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了弹性地基上转动FGM梁在夹紧-夹紧、夹紧-简支和夹紧-自由三种边界条件下横向自由振动的无量纲固有频率,再将控制微分方程退化到无转动和地基时的FGM梁,计算其不同梯度指数时第一阶无量纲固有频率值,并和已有文献的FEM和Lagrange乘子法计算结果进行比较,数值完全吻合。计算结果表明,三种边界条件下FGM梁的无量纲固有频率随无量纲转速和无量纲弹性地基模量的增大而增大;在一定无量纲转速和无量纲弹性地基模量下,FGM梁的无量纲固有频率随着FGM梯度指数的增大而减小;但在夹紧-简支和夹紧-自由边界条件下,一阶无量纲固有频率几乎不变。  相似文献   

12.
The first-order non-linear interactions between the pipe structure and the flowing fluid are considered to formulate the governing equations of motion for the in-plane vibration of a circular-arc pipe containing flowing fluid. The forces and moments induced in a pipe element by the flowing fluid are analyzed as functions of the instantaneous local curvature of the pipe. The flow field is assumed to be one-dimensional, incompressible and of uniform flow, and to remain independent of pipe motion. For a fixed-end circular-arc pipe with arbitrary arc angle, the non-linear governing equations are solved by the method of multiple scales in conjunction with the Bubnov-Galerkin method. The non-linear solutions indicate that the vibrational behavior of the system can differ substantially from that predicted by a linear analysis.  相似文献   

13.
Smart hydrogels are environmentally sensitive hydrogels, which can produce a sensitive response to external stimuli, and often exhibit the characteristics of multi filed coupling. In this paper, a hydrogel rod under chemo-mechanical coupling was analytically studied based on a poroelastical model. The already known constitutive and governing equations were simplified into the one dimensional case, then two different boundary conditions were considered. The expressions of concentration, displacement, chemical potential and stress related to time were obtained in a series form. Examples illustrate the interaction mechanism of chemical and mechanical effect. It was found that there was a balance state in the diffusion of concentration and the diffusion process could lead to the expansion or the stress change of the hydrogel rod.  相似文献   

14.
This paper presents numerical examples for the moving grid finite element algorithm derived in Part Ito solve the non-linear coupled set of PDEs governing immiscible multiphase flow in porous media in one dimension. Examples include single- and double-front simulations for two- and three-phase flow regimes and incorporating a mass sink. The modelling approach is shown to achieve significant savings in computation time and memory allocation when compared with fixed grid solutions of equivalent accuracy. This work includes sensitivity analyses for the parameters which are incorporated in the grid adaptation method, including the curvature weights, artificial viscosity and artificial repulsive force. It is found that the curvature weights are exponential functions of the negative ratio of the square root of the domain length to the number of discrete nodes. These weighting parameters are also shown to depend upon the shape of the front. On the basis of the examined simulations, it is recommended that artificial viscosity be neglected in the solution of the coupled non-linear set of PDEs governing multiphase flow in porous media. Similarly, use of a repulsive force is found to be unnecessary in simulations involving the migration of two liquid phases. For multiphase flows incorporating a gas phase it is recommended to use a non-zero value for the repulslive force to avoid development of an ill-conditioned nodal distribution matrix. An equation to evaluate the repulsive force under these circumstances is suggested.  相似文献   

15.
This paper shows how an electrical-resistance analog based on the “conjugate-beam” concept and developed to simulate the elastic behavior of beams in the plane of loading may be used to examine the lateral buckling behavior of beams.  相似文献   

16.
外界载荷作用下复合材料薄板的弯曲行为是工程重点关注的问题之一。针对各向同性和正交各向异性的薄板弯曲问题,研究人员已给出了经典数值解。由于计算的复杂性,针对各向异性薄板弯曲问题的解答较少。本文从薄板弯曲问题的控制方程出发,建立符合该问题的辅助特征方程,并确定相应的特征值和特征函数。利用广义积分变换的思想,建立了求解非正交铺层条件下各向异性薄板弯曲问题的数值算法,给出了各向异性薄板弯曲的精确解。与其他文献结果比较发现,该方法具有较好的收敛性和准确性。  相似文献   

17.
18.
In this paper, the solution of a beam on nonlinear elastic foundation whose deflection satisfies the nonlinear boundary value problem (1, 2), is studied by means of the theory of quasilinearization. The problem is formulated in Section 2 where conditions for the existence and uniqueness of the solution are stated. In Section 3, the idea of quasilinearization is introduced and the positivity of an associated linear differential operator is investigated. In Section 4 the usual version of quasilinearization, i.e. The Newton-Raphson-Kantorovich sequence, is presented and conditions under which this sequence is monotonically convergent, are established. In Section 5, an alternative successive approximation scheme whose derivation relies on ideas of quasilinearization, is presented. Finally, an example is solved by numerical procedures based in the methods discussed in previous sections.  相似文献   

19.
CFD modelling of ‘real‐life’ thermo‐fluid processes often requires solutions in complex three‐dimensional geometries, which can result in meshes containing aspects that are badly distorted. Cell‐centred finite volume methods (CC‐FV), typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes that feature cells with highly non‐orthogonal shapes. The control volume‐finite element method (CVFE) uses a vertex‐based approach and handles distorted meshes with relative ease, but is computationally expensive. A combined vertex‐based—cell‐centre technique (CFVM), detailed in this paper, allows solutions on distorted meshes where purely cell‐centred solutions procedures fail. The method utilizes the ability of the vertex‐based approach to resolve the flow field on a distorted mesh, enabling well established cell‐centred physical models to be employed in the solution of other transported quantities. The vertex‐based flow code is verified against a manufactured 3D solution and error norms are compared on meshes with various degrees of distortion. The CFVM method is validated with benchmark solutions for thermally driven flow and turbulent flow. Finally, the method is illustrated on three‐dimensional turbulent flow over an aircraft wing on a distorted mesh where purely cell‐centred techniques fail. The CFVM is relatively straightforward to embed within generic CC based CFD tools allowing it to be employed in a wide variety of processing applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A nonlocal study of the vibration responses of functionally graded (FG) beams supported by a viscoelastic Winkler-Pasternak foundation is presented. The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation, which were not considered in most literature on this subject, and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven (ε-D) and stress-driven (σ-D) two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered, which can address both the stiffness softening and toughing effects due to scale reduction. The generalized differential quadrature method (GDQM) is used to solve the complex eigenvalue problem. After verifying the solution procedure, a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained. Subsequently, the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号