首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Jin Zhang 《Meccanica》2018,53(11-12):2999-3013
Using molecular dynamics (MD) simulations and Eringen’s nonlocal elasticity theory, in this paper we comprehensively study the small-scale effects on the buckling behaviours of carbon honeycombs (CHCs). The MD simulation results show that the small-scale effects stemming from the long-range van der Waals interaction between carbon atoms can significantly affect the buckling behaviours of CHCs. To incorporate the small-scale effects into the theoretical analysis of the buckling of CHCs, we develop a nonlocal continuum mechanics (CM) model by employing Eringen’s nonlocal elasticity theory. Our nonlocal CM model is found to fit MD simulations well by setting the nonlocal parameter in the nonlocal CM model as 0.67. It is shown in our MD-based nonlocal CM model that when the cell length of CHCs is smaller than 7.93 Å the influence of small-scale effects on the bucking of CHCs becomes unnegligible and the small-scale effects can greatly reduce the critical buckling stress of CHCs. This reduction in critical buckling stress induced by the small-scale effects becomes more significant as the length of the cell wall decreases. Moreover, CHCs are found to display two different buckling modes when they are under different states of loading. The critical condition for the transition between these two buckling modes of CHCs can be greatly affected by the small-scale effects when the vertical cell wall and the inclined cell wall of CHCs have different lengths.  相似文献   

2.
3.
4.
Strain-softening damage due to distributed cracking is modeled by an elastic continuum with a quasiperiodic array of cracks of regular spacing but varying sizes. As a model for the initial stage, the cracks are penny-shaped and small compared to their spacing, and as a model for the terminal stage the uncracked ligaments between the cracks are circular and small compared to their spacing. The strain due to cracks and the compliance per crack are calculated. The cracked material is homogenized in such a manner that the macroscopic continuum strains satisfy exactly the condition of compatibility with the actual strains due to cracks, and the macroscopic continuum stress satisfies exactly the condition of work equivalence with the actual stresses in the cracked material. The results show that, contrary to the existing theories, the damage variable used in continuum damage mechanics should be nonlocal, while the elastic part of the response should be local. In particular, the nonlocal continuum damage should be considered as a function of the spatial average of the cracking strain rather than its local value. The size of the averaging region is determined by the crack spacing.  相似文献   

5.
The basic principles of the method of molecular dynamics are analyzed. Symplectic difference schemes for the numerical solution of molecular dynamics equations are considered. Stability is studied, and the errors in the energy conservation law, which are induced by using these schemes, are estimated. Equations of mechanics of continuous media are derived by means of averaging over the volume of an atomic system. Expressions for the stress tensor are obtained by using the virial principle and the method of averaging over the volume. The principles of construction of EAM and MEAM potentials of atomic interaction in crystals are analyzed. Two problems of fracture of copper-molybdenum composites are solved by the method of molecular dynamics.  相似文献   

6.
An analytical model based on a molecular mechanics approach is presented to relate the elastic properties of a single-walled carbon nanotube to its atomic structure. We derive closed-form expressions for elastic modulus and Poisson's ratio as a function of the nanotube diameter. Properties at different length scales are directly connected via these expressions. The analytically calculated elastic properties for achiral nanotubes using force constants obtained from experimental data of graphite are compared to those based on tight binding numerical calculations. This study represents a preliminary effort to develop analytical methods of molecular mechanics for applications in nanostructure modeling.  相似文献   

7.
非局部弹性直杆振动特征及Eringen常数的一个上限   总被引:5,自引:0,他引:5  
郑长良 《力学学报》2005,37(6):796-798
应用非局部连续介质理论推导了弹性直杆的振动方程,并采用分离变量法 进行求解,得到了振动方程的本征方程、模态函数及通解. 结果表明:非局部连续介质弹性 直杆的自振频率因非局部效应而降低,降低的幅度不仅与材料内禀长度相关,还与振动频率 的阶次相关;而且频率大小存在极限值,显示了与晶格点阵相同特性. 通过与Brillouin格 波结果比较,给出了Eringen非局部理论中材料常数的一个上限.  相似文献   

8.
Jerk dynamics is used for a new method for the suppression of self-excited vibrations in nonlinear oscillators. Two cases are considered, the van der Pol equation and nonlinear oscillator with quadratic and cubic nonlinearities. A nonlocal control force is introduced in such a way to obtain a third order nonlinear differential equation (jerk dynamics). Using the asymptotic perturbation method, two slow flow equations on the amplitude and phase of the response are obtained, and subsequently the performance of the control strategy is investigated. The feedback gains are connected with the stability and response of the system under control. Uncontrolled and controlled systems are compared and the appropriate choices for the feedback gains are found in order to reduce the amplitude peak of the self-excitations. Numerical simulation confirms the validity of the new method.  相似文献   

9.
In this work, we study the temperature-induced development of “dynamically arrested” states in dense suspensions of “soft colloids” (multi-arm star polymers and/or block-copolymers micelles) by means of molecular dynamics (MD) simulations. Temperature increase in marginal solvents results in “soft sphere” swelling, dynamical arrest, and eventually crystallization. However, two distinct “dynamically arrested” states were found, one almost amorphous (“glassy”) and one with a considerable degree of crystallinity, yet lower than that of the fully equilibrated crystal. It is remarkable that even that latter state permitted self-diffusion in the timescale of the simulations, an effect that underlies the importance of the “ultra-soft” nature of inter-particle potential. The “number of connections” criterion for crystallinity proved to be very successful in identifying the ultimate thermodynamic trend from the very early stages of the α-relaxation. This paper was presented at the Third Annual Rheology Conference, AERC 2006, April 27–29, 2006, Crete, Greece.  相似文献   

10.
Molecular dynamics(MD) has served as a powerful tool for designing materials with reduced reliance on laboratory testing. However, the use of MD directly to treat the deformation and failure of materials at the mesoscale is still largely beyond reach. In this work, we propose a learning framework to extract a peridynamics model as a mesoscale continuum surrogate from MD simulated material fracture data sets. Firstly,we develop a novel coarse-graining method, to automatically handle the material ...  相似文献   

11.
Discrete dislocation simulations of two boundary value problems are used as numerical experiments to explore the extent to which the nonlocal crystal plasticity theory of Gurtin (J. Mech. Phys. Solids 50 (2002) 5) can reproduce their predictions. In one problem simple shear of a constrained strip is analyzed, while the other problem concerns a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear. In the constrained layer problem, boundary layers develop that give rise to size effects. In the composite problem, the discrete dislocation solutions exhibit composite hardening that depends on the reinforcement morphology, a size dependence of the overall stress-strain response for some morphologies, and a strong Bauschinger effect on unloading. In neither problem are the qualitative features of the discrete dislocation results represented by conventional continuum crystal plasticity. The nonlocal plasticity calculations here reproduce the behavior seen in the discrete dislocation simulations in remarkable detail.  相似文献   

12.
This article presents a new asymptotic method to predict dynamic pull-in instability of nonlocal clamped–clamped carbon nanotubes (CNTs) near graphite sheets. Nonlinear governing equations of carbon nanotubes actuated by an electric field are derived. With due allowance for the van der Waals effects, the pull-in instability and the natural frequency–amplitude relationship are investigated by a powerful analytical method, namely, the parameter expansion method. It is demonstrated that retaining two terms in series expansions is sufficient to produce an acceptable solution. The obtained results from numerical methods verify the strength of the analytical procedure. The qualitative analysis of system dynamics shows that the equilibrium points of the autonomous system include center points and unstable saddle points. The phase portraits of the carbon nanotube actuator exhibit periodic and homoclinic orbits.  相似文献   

13.
Molecular dynamics study on mechanics of metal nanowire   总被引:6,自引:0,他引:6  
The new concept of using nanowires as building blocks for logic and memory circuits makes it very necessary to fully understand the mechanical behaviors of these nanowires. Embedded-atom method is employed to carry out three-dimensional molecular dynamics simulations of the mechanical properties of rectangular cross-section copper nanowire. A stable free-relaxation state and the stress–strain relation of nanowire under extension are obtained. The elastic modulus, yielding strength and deformation are studied. The surface effect, size effect, and temperature effect on the extension property of metal nanowire are discussed in detail. The simulation results from our present work show that at nanoscale surface atoms play an important role on the mechanical behaviors of nano-structures. This study of mechanical properties of metal nanowires will be helpful to the design, manufacture and manipulation of nano-devices.  相似文献   

14.
We present a new procedure for the systematic reduction of a continuum theory of martensitic transformations to a spin system whose dynamics can be described by an automaton. Our prototypical model reproduces most of the experimental observations in martensites associated with criticality and power-law acoustic emission. In particular, it explains in a natural way why cyclic training is necessary to reach scale-free behavior.   相似文献   

15.
16.
The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature induced surface energy and its consequential stress state is investigated and found to be rather negligible. Furthermore, it is shown that the nonlinear character of the van der Waals interactions has to be considered to obtain maximum layer numbers comparable to experimental observations. The proposed model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions.  相似文献   

17.
18.
19.
Atomic-scale finite element analyses show that 2:1 internal resonance mechanism exists in a range of single-walled carbon nanorings (10–60). When an initial radial breathing mode (RBM) vibration with sufficiently high velocity is imposed to a nanoring, circumferential flexural modes (CFMs) can be excited after a period of RBM-dominated vibration. Then, mode transformations between RBM and the excited CFMs can be observed in the subsequent vibration process. When single-walled carbon nanorings are assembled to make double- or triple-walled carbon nanorings, the 2:1 internal resonance may change to 1:1 internal resonance in a specific ring due to the strong interactions between these nanorings. Furthermore, mode transformations between RBM and the excited CFMs can become unstable in a specific ring if the excited CFMs in neighbouring layer rings are not symmetrically matching between each other. 2:1 internal resonance is also shown in selected armchair single-walled carbon nanotubes except in a special case (armchair (9, 9)), in which 1:1 internal resonance occurs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号