首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of the HCN molecule is very important in environment and industrial applications. The BeONT may be good candidate for HCN capture because of large surface. Unfortunately, BeONT shows limited HCN detection. Therefore, we investigate the possibility of HCN adsorption on Ca and Mg-doped BeONT by density functional theory calculations. It was found that HCN adsorption on doped nanotube has relatively higher adsorption energy as compared with the perfect one. Furthermore, there exists a strong adsorption between HCN molecule and doped nanotubes, which exhibited more active interaction and larger net charge transfer than that of pristine nanotube. As well as, calculated geometrical parameters and electronic properties for studied systems indicate that the Ca-doped BeONT and Mg-doped BeONT present high sensitivity to HCN, compared with the pristine BeONT. Theoretical results reveal that the adsorption of the HCN on the doped nanotube is influenced on the electronic conductance of the doped-BeONT. Therefore, Ca and Mg-doped nanotube can be considered as promising sensor for detecting HCN molecule. According to NBO analysis, electron flow is spontaneous from doped nanotube to HCN molecule.  相似文献   

2.
The adsorption behavior of the HCN on the surface of beryllium oxide nanotube (BeONT) is studied by the density functional theory. Geometrical parameters, electronic properties and adsorption energies have been calculated for the BeONT and fourteen different HCN configurations on the nanotube. According to the obtained results, the process of the HCN molecule adsorption on different sites on the external surface of the nanotube is exothermic and all of the configurations are stable, while the process of HCN molecule adsorption on the internal surface of the BeONT is endothermic. The adsorption energy values indicate that the HCN molecule can be physically adsorbed on the surface of the BeONT. Furthermore, the HOMO–LUMO gap (Eg) of the BeONT decreases upon the HCN adsorption, resulting in the enhancement of the electrical conductivity. The AIM theory has been also utilized to analyze the properties of the bond critical points: their electron densities and their Laplacians. NBO analysis indicates that the HCN molecule can be adsorbed on the surface of the nanotube with a charge transfer from nanotube to HCN molecule. Due to the physisorption, NQR parameters of nanotube are also altered. In order to examine the deformation degree of the nanotube after HCN molecule adsorption, deformation energy is calculated, which indicates that no significant curvature in the geometry of the nanotubes is occurred when HCN adsorbs onto the surface of BeONT.  相似文献   

3.
We propose the use of the Si atom in the experimentally observed C59Si molecule as a possible way to controllably anchor fullerene molecules on a Si surface, due to the formation of a strong bond to one of the Si surface atoms. All our results are based on ab initio total energy density functional theory, and we obtain that the binding energy is on the order of 2.1 eV, approximately 1.4 eV more stable than a C60 bonded in a similar situation. A possible route to obtain such adsorption via a (C59Si)2 dimer is examined, and we find the whole process to be exothermic by approximately 0.2 eV.  相似文献   

4.
Twenty kinds of adsorptions of HCN on the Fe(100), Fe(111) and Fe(110) surfaces at the 1/4 monolayer coverage are found using the density functional theory. For Fe(100), the adsorption energy of the most stable configuration where the HCN locates at the fourfold site with the C-N bonded to four Fe atoms is 1.928 eV. The most favored adsorption structure for HCN on Fe(111) is f-η3(N)-h-η3(C), in which the C-N bond is almost parallel to the surface, and the adsorption energy is 1.347 eV. On Fe(110), the adsorption energy in the most stable configuration in which HCN locates at the two long-bridge sites is 1.777 eV. The adsorption energy of the parallel orientation for HCN is larger than that of the perpendicular configuration. The binding mechanism of HCN on the Fe(100), Fe(111) and Fe(110) surfaces is also analyzed by Mulliken charge population and the density of states in HCN. The result indicates that the configurations in which the adsorbed HCN becomes the non-linear are beneficial to the formation of the addition reaction for hydrogen. The nature that the introduction of Fe into the catalyst could increase the catalytic activity of the bimetallic catalyst in the addition reaction of hydrogen for nitriles is revealed.  相似文献   

5.
Graphyne, a lattice of benzene rings connected by acetylene bonds, is one-atom-thick planar sheet of sp- and sp2-bonded carbons differing from the hybridization of graphene (considered as pure sp2). Here, HCN adsorption on the pristine and Si-doped graphynes was studied using density-functional calculations in terms of geometric, energetic, and electronic properties. It was found that HCN molecule is weakly adsorbed on the pristine graphyne and slightly affects its electronic properties. While, Si-doped graphyne shows high reactivity toward HCN, and, in the most favorable state, the calculated adsorption energy is about ?10.1 kcal/mol. The graphyne, in which sp-carbon was substituted by Si atom, is more favorable for HCN adsorption in comparison with sp2-carbon. It was shown that the electronic properties of Si-doped graphyne are strongly sensitive to the presence of HCN molecule and therefore it may be used in sensor devices.  相似文献   

6.
7.
《印度化学会志》2022,99(11):100769
Fullerene-C60 and its heteroatom decorated forms have been widely investigated as drug delivery vehicles and for sensor applications. Further, in the literature carboxylated or carboxylic derivatives of fullerenes have found a special place for biological applications due to their promising water-soluble properties. In the scope of this study, we examined the interaction between paracetamol (acetaminophen) which is a widely prescribed drug to manage acute and chronic pain conditions and C60, silicon doped fullerene (SiC59) and (1,2-methanofullerene C60)-61-carboxylic acid (C60-CH-COOH) using density functional theory calculations. Stability evaluations, electronic and structural properties were carried out by analyzing binding energies, frontier molecular orbitals and natural bond orbitals. It was found that silicon doping on the surface of C60 enhanced the adsorption strength of paracetamol and SiC59 is quite sensitive to the presence of paracetamol drug molecule.  相似文献   

8.
Recently, capturing or transforming greenhouse gases, such as CO(2) and N(2)O, have attracted considerable interest from the perspective of environmental protection. In the present work, by studying CO(2) and N(2)O adsorption on pristine and calcium (Ca)-decorated fullerenes (C(60)) with density functional theory (DFT) methods, we have evaluated the potential application of this C(60)-based complex for the capture of CO(2) and transformation of N(2)O. The results indicate that the adsorptions of CO(2) and N(2)O molecules on the pristine C(60) are considerably weak accompanied by neglectable charge transfer. When C(60) is decorated with Ca atoms, however, it is found that CO(2) and N(2)O adsorptions on the C(60) are greatly enhanced. Up to five CO(2) molecules can be adsorbed on the CaC(60) system due to the electrostatic interaction. For N(2)O molecule, it is first molecularly adsorbed on the Ca atom with the adsorption energy of -0.534 eV, followed by the N(2) formation with a low barrier and high exothermicity. Moreover, when four Ca atoms are decorated on the surface of C(60), the maximum number of the adsorbed CO(2) molecules is 16. Our results might be useful not only to widen the potential applications of fullerene but also to provide an effective method to capture or transform greenhouse gases.  相似文献   

9.
The mechanism of Li adsorption on a graphene–fullerene (graphene–C60) hybrid system has been investigated using density functional theory (DFT). The adsorption energy for Li atoms on the graphene–C60 hybrid system (?2.285 eV) is found to be higher than that on bare graphene (?1.375 eV), indicating that the Li adsorption on the former system is more stable than on the latter. This is attributed to the high affinity of Li atoms to C60 and the charge redistribution that occurs after graphene is mixed with C60. The electronic properties of the graphene–C60 system such as band structure, density of states, and charge distribution have been characterized as a function of the number of Li atoms adsorbed in comparison to those of the pure graphene and C60. Li adsorption is found to preferentially occur on the C60 side due to the high adsorption energy of Li on C60, which imparts a metallic character to the C60 in the graphene–C60 hybrid system.  相似文献   

10.
Porphyrin and fullerene donor-acceptor complexes have been extensively studied for their photo-induced charge transfer characteristics. We present the electronic structure of ground states and a few charge transfer excited states of four cofacial porphyrin-fullerene molecular constructs studied using density functional theory at the all-electron level using large polarized basis sets. The donors are base and Zn-tetraphenyl porphyrins and the acceptor molecules are C(60) and C(70). The complexes reported here are non-bonded with a face-to-face distance between the porphyrin and the fullerene of 2.7 to 3.0 A?. The energies of the low lying excited states including charge transfer states calculated using our recent excited state method are in good agreement with available experimental values. We find that replacing C(60) by C(70) in a given dyad may increase the lowest charge transfer excitation energy by about 0.27 eV. Variation of donor in these complexes has marginal effect on the lowest charge transfer excitation energy. The interfacial dipole moments and lowest charge transfer states are studied as a function of face-to-face distance.  相似文献   

11.
Thiophene adsorption on the Rh(111) surfaces has been investigated by density functional theory.The results show that the adsorption at the hollow and bridge sites is the most stable.The molecular plane of the thiophene ring is distorted,the C=C bond is stretched to 1.448  and the C-C bond is shortened to 1.390.The C-H bonds tilt 22~42oaway from the surface.The calculated adsorption geometries are in reasonable agreement with population analysis and density of states.The thiophene molecule obtains 0.74 electrons,reflecting the interaction between the lone pair of sulfur and the d-orbitals of metal.The reaction paths and transition states for desulfurization of the molecule have been investigated.The bridge adsorption structure of thiophene leads to a thiol via an activated reaction with an energetic barrier of 0.30 eV.This second step is slightly difficult,and dissociation into a C4H4 fragment and a sulfur atom is possible,with an energetic barrier of 0.40 eV.  相似文献   

12.
We report a photoelectron spectroscopy (PES) study on a series of fullerene oxides, C60Ox- (x = 1-3). The PES spectra reveal one isomer for C60O-, two isomers for C60O2, and multiple isomers for C60O3-. Compared to C60, the electronic structures of C60Ox are only slightly perturbed, resulting in similar anion photoelectron spectra. The electron affinity of C60Ox was observed to increase only marginally with the number of oxygen atoms, x, from 2.683 eV for C60, to 2.745 eV for C60O, and 2.785 eV/2.820 eV for C60O2 (two isomers). We also carried out theoretical calculations, which confirmed the observed isomers and showed that all the fullerene oxides are in the form of epoxide. The PES and theoretical calculations, as well as molecular orbital analysis, indicate that addition of oxygen atoms to the C60 cage only modifies the local carbon network and leave the rest of the fullerene cage largely intact geometrically and electronically.  相似文献   

13.
Using density functional theory, we have investigated the adsorption of formaldehyde (H2CO) on the interior and exterior walls of a carbon nitride nanotube (CNNT) in terms of energetic, geometric, and electronic properties. It was found that the adsorption is more preferential on the exterior surface of the tube with maximum adsorption energy of ?7.4 kcal/mol. It has also been found that the adsorption energy per molecule is increased by increasing the number of adsorbed molecules. The results reveal that the electronic properties of CNNT are very sensitive to the presence of formaldehyde so that the HOMO/LUMO gap is reduced from 4.02 eV in the free tube to 2.44 eV in the most stable configuration of 3H2CO/CNNT complex. Also, we have showed that the response of the tube may depend on concentration of the H2CO molecules, suggesting that the CNNT might produce an electrical signal in the presence of H2CO molecules.  相似文献   

14.
A perfect hybrid complex C60(FeCp)12 is predicted using density functional theory method. This fullerene derivative could be view as a C60 cage of which each C5 ring coordinates a (FeCp) ligand. Theoretical calculation reveals that it has a large lowest unoccupied molecular orbital–highest unoccupied molecular orbital gap (2.53 eV) and keeps the Ih symmetry of C60. But the C? C bond length of its inner C60 cage trends to be uniform, which is quite different from the bonding character of C60 fullerene. Further investigation reveals that the chemical bonding, TDOS and the aromaticity of the (C5FeCp) unit in C60(FeCp)12 are similar as those of ferrocene molecule, which indicates the similarity of their electronic properties. So, this compound could be viewed as the combination of ferrocene molecules. Thus, its unconventional formation process from 12 Fe(Cp)2 is proposed and the reaction energy is calculated. As the C60(FeCp)12 compound has the geometry framework as C60 and the electronic characters as ferrocene, it would inherit the outstanding properties from both two molecules and have wild potential applications in nanochemistry. We hope our study could give some references for the further investigation and experimental synthesis research of the C60(FeCp)12 compound. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
These contributions explore interaction modes between the methanethoil (CH3SH) molecule and the Fe(100) surface via implementing accurate density functional theory (DFT) calculations with the inclusion of van der Waals corrections. We consider three adsorption sites over the Fe(100) surface, namely, top(T), bridge (B), and hollow (H) sites as potential catalytic active sites for the molecular and dissociative adsorption of the CH3SH molecule. The molecular adsorption structures are found to occupy either B or T sites with former sites holding higher stability by 0.17 eV. The inclusion of van der Waals corrections refound to slightly alter adsorption energies. For instance, adsorption energies increased by ~ 0.18 and ~ 0.21 eV for B and T structure, respectively, in reference to values obtained by the plain generalized gradient approximation (GGA) functional. A stability ordering of the dissociation products was found to follow the sequence (CH4, S) > (CH3, S, H) > (─SCH3, H) > (─CH3, SH). The differential charge density distributions were examined to underpin prominent electronic contributing factors. Direct fission of C─S bond in the CH3SH molecule attains exothermic values in the range 2.0 to 2.1 eV. The most energetically favorable sites for the surface-mediated fission of the thiol's S─H bond correspond to the structure where the ─SCH3 and H are both situated on hollow sites with an adsorption energy of −2.43 eV. Overall, we found that inclusion of van der Waals functional to change the binding energies more noticeably in case of dissociative adsorption structures. The results presented herein should be instrumental in efforts that aim to design stand-alone Fe desulfurization catalysts.  相似文献   

16.
Graphene quantum dots (GQDs), synthesised via controlled carbonisation of citric acid, were reduced by hydrazine hydrate and then used as hydrogen cyanide (HCN) gas sensors. Checking of the reduction step by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) techniques revealed that most of the oxygen-containing functional groups were removed from the GQDs. It was observed the reduction process is necessary for sensitising of GQDs for HCN gas. The electrical resistance of the reduced GQDs was increased as a result of their exposure to HCN gas. Accepting a p-type semiconducting characteristic for GQD material, the above-mentioned behaviour suggested electron donation from HCN to GQD. The sensor response to HCN gas was reversible, suggesting a reversible adsorption/desorption phenomenon of HCN to the GQDs. The response as well as the recovery time of the sensor was different depending on the HCN concentration tested. The developed sensor showed linear HCN response from 1 to 100 ppm. The detection limit of the sensor was estimated to be 0.6 ppm (S/N). Relative standard deviation f HCN determination by the developed sensor was calculated to be 5.7% (n = 4, [HCN] = 50 ppm). The sensor response was did not vary significantly within 6 months.  相似文献   

17.
The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of –2.93 and –51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.  相似文献   

18.
Structural and electronic properties of S-doped fullerene C58 were calculated systematically via Hartree-Fock self-consistent field (SCF) and density functional B3LYP levels of theory with 6-31G(d) basis set. The most stable C58S represents an open cage structure with a nine-member ring orifice, which provides a large hole for large atoms or small molecules to pass through into the cage. The most stable endohedral S@C58 has the S atom seated near the center of the C58 cage. The calculated highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps of the isomers lie in the range of 1.42-2.50 eV. The electron affinity and the ionization potential were also presented as an indicator of the kinetic stability. Our results may aid in the design of experimental methods for controlling the nature of fullerene cages (for example, doping, opening, and reclosing them).  相似文献   

19.
Structural and electronic properties of C60 fullerene nano-cages doped with GaP, GaN, AlP, and AlN were performed by density functional theory (DFT) at the B3LYP method and 6-31G** basis set. The results exhibit that AlP-doped fullerene has the most gap energy (2.383 eV), and the lowest one refers to GaN (2.283 eV), and there is not considerable difference in the range of gap energies. Therefore, it is clear that GaN has the most potential to translate electron. Hence, the use of GaN-doped fullerene in electronical devices could be more acceptable than those of AlN, AlP, and GaP. To examine the effect of the corresponding doping on the thermodynamic parameters of these systems, we have investigated parameters such as chemical potential, chemical hardness, electrophilicity, and the highest electronic charge transferred in the related structures.  相似文献   

20.
The interaction between fullerene C60 and heparin was studied using a fullerene C60‐coated piezoelectric quartz crystal sensor. The irreversible response of the piezoelectric quartz crystal was found which could be attributed to the quite strong adsorption of heparin onto the C60 molecule. Immobilized fullerene C60‐Heparin was prepared and successfully applied as a good inhibitor for blood clotting. Like solvated heparin, both wet and dry C60‐heparin solid all demonstrated excellent ability of anticoagulation of blood. The blood clotting time with C60‐heparin solid was found to be > 7 days, while only 17.9 min required for blood clotting time in the absence of C60‐heparin solid. Furthermore, the C60‐heparin coated artificial PVC blood vessels were prepared by coating fullerene C60 onto the surface of artificial PVC blood vessels, followed by the adsorption of water solvated heparin onto the fullerene C60 molecule to form C60‐heparin coating. The blood clotting time of blood in artificial PVC blood vessels with C60‐heparin coating was found to be > 30 days, while only ≤ 30 min. of blood clotting time without the C60‐Heparin coating was observed. The C60‐heparin coated artificial PVC blood vessels can be expected to be employed in human body for the anticoagulation of blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号