首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the following nonperiodic diffusion systems
$ \left\{{ll} \partial_{t}u-\triangle_{x}u+b(t,x)\nabla_{x}u+V(x)u=G_{v} (t,x,u,v), \\ -\partial_{t}v-\triangle_{x}v-b(t,x)\nabla_{x}v+V(x)v=G_{u} (t,x,u,v), \right. {\forall}(t,x)\in\mathbb{R} \times\mathbb{R}^{N}, $ \left\{\begin{array}{ll} \partial_{t}u-\triangle_{x}u+b(t,x)\nabla_{x}u+V(x)u=G_{v} (t,x,u,v), \\ -\partial_{t}v-\triangle_{x}v-b(t,x)\nabla_{x}v+V(x)v=G_{u} (t,x,u,v), \end{array}\right. {\forall}(t,x)\in\mathbb{R} \times\mathbb{R}^{N},  相似文献   

2.
We study existence and multiplicity of homoclinic type solutions to the following system of diffusion equations on \mathbbR ×W{\mathbb{R}} \times \Omega :
$ \left\{ {{*{20}c} {\,\,{\partial}_t u - {\Delta}_x u + b(t,x) \cdot {\nabla}_x u + V(x)u = H_v (t,x,u,v),} \\ { - {\partial}_t v - {\Delta}_x v - b(t,x) \cdot {\nabla}_x v + V(x)v = H_u (t,x,u,v),}\\ } \right. $ \left\{ {\begin{array}{*{20}c} {\,\,{\partial}_t u - {\Delta}_x u + b(t,x) \cdot {\nabla}_x u + V(x)u = H_v (t,x,u,v),} \\ { - {\partial}_t v - {\Delta}_x v - b(t,x) \cdot {\nabla}_x v + V(x)v = H_u (t,x,u,v),}\\ \end{array} } \right.   相似文献   

3.
一类奇异半线性热方程初值问题解 的唯一性结果   总被引:6,自引:0,他引:6  
蹇素雯  杨凤藻 《数学学报》2000,43(2):301-308
设u(t,x),u(t,x)为初值问题在带形域ST=(0,T)×Rn内的两个非负经曲解,f(x)连续有界非负的实函数,则有如下的结果:(1)若f(x)不恒为零,则在ST中u(t,x);(2)若γ>1,则在ST中u(t,x)u(t,x);(3)若0>γ>1,f(x)0,则问题(1.1),(1.2)的解不唯一且它的所有非平凡解的集合为u(t,s)=这里s≥0是参数,其中记号(γ)+=max{γ,0}.  相似文献   

4.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

5.
The authors study the existence of homoclinic type solutions for the following system of diffusion equations on R × RN:{■tu-xu + b ·▽xu + au + V(t,x)v = Hv(t,x,u,v),-■tv-xv-b·▽xv + av + V(t,x)u = Hu(t,x,u,v),where z =(u,v):R × RN → Rm × Rm,a > 0,b =(b1,···,bN) is a constant vector and V ∈ C(R × RN,R),H ∈ C1(R × RN × R2m,R).Under suitable conditions on V(t,x) and the nonlinearity for H(t,x,z),at least one non-stationary homoclinic solution with least energy is obtained.  相似文献   

6.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

7.
In this note we consider the first boundary value problem for a general parabolic Monge-Ampere equation u_t - log det(D_{ij}u) = f(x, t, u,D_2u) in Q, \quad u = φ(x, t) on ∂, Q It is proved that there exists a unique convex in x solution to the problem from C^{1+β,2+β/2}(\overline{Q}) under certain structure aod smoothness conditions (H3) - (H7).  相似文献   

8.
In this paper, we consider the viscoelastic wave equation with a delay term in internal feedbacks; namely, we investigate the following problem
(x,t)- u(x,t)+_0^tg(t-s)u(x,s)ds+_1u_t(x,t)+_2 u_t(x,t-)=0u_{tt}(x,t)-\Delta u(x,t)+\int\limits_{0}^{t}g(t-s){\Delta}u(x,s){d}s+\mu_{1}u_{t}(x,t)+\mu_{2} u_{t}(x,t-\tau)=0  相似文献   

9.
We consider L^p-L^q estimates for the solution u(t,x) to tbe following perturbed Klein-Gordon equation ∂_{tt}u - Δu + u + V(x)u = 0 \qquad x∈ R^n, n ≥ 3 u(x,0) = 0, ∂_tu(x,0) = f(x) We assume that the potential V(x) and the initial data f(x) are compact, and V(x) is sufficiently small, then the solution u(t,x) of the above problem satisfies ||u(t)||_q ≤ Ct^{-a}||f||_p for t > 1 where a is the piecewise-linear function of 1/p and 1/q.  相似文献   

10.
One considers the problem of the asymptotic behavior for K→+∞ of the solution of the Cauchy problem $$u_{tt} - u_{xx} + \kappa ^2 u = 0; u|_{t = 0} = \theta (x), u_t |_{t = 0} = 0 (t > 0 - fixed)$$ Hereθ(x) is the Heaviside function. In the neighborhood of the characteristics x=±t function u(x,t)?2 oscillates exceptionally fast (the wavelength is of order k?2). Near the t axis the asymptotics of u(x,t) contains the Fresnel integral.  相似文献   

11.
We consider a semilinear wave equation of the form u_tt(x, t) - Δu(x, t) = - m(x, t)u_t(x, t) + ∇Φ(x) ⋅ ∇u(x, t ) + b(x)|u(x, t)|^{p-2}u(x, t) where p > 2. We show, under suitable conditions on m, Φ, b, that weak solutions break down in finite time if the initial energy is negative. This result improves an earlier one by the author [1].  相似文献   

12.
Archiv der Mathematik - We consider the Cauchy problem for the nonlinear wave equation $$u_{tt} - \Delta _x u +q(t, x) u + u^3 = 0$$ with smooth potential $$q(t, x) \ge 0$$ having compact support...  相似文献   

13.
Ru Ying  XUE 《数学学报(英文版)》2010,26(12):2421-2442
we study an initial-boundary-value problem for the "good" Boussinesq equation on the half line
{δt^2u-δx^2u+δx^4u+δx^2u^2=0,t〉0,x〉0.
u(0,t)=h1(t),δx^2u(0,t) =δth2(t),
u(x,0)=f(x),δtu(x,0)=δxh(x).
The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h1, h2) belong to the product space
H^5(R^+)×H^s-1(R^+)×H^s/2+1/4(R^+)×H^s/2+1/4(R^+)
1 The analyticity of the solution mapping between the initial-boundary-data and the with 0 ≤ s 〈 1/2. solution space is also considered.  相似文献   

14.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

15.
Potential Analysis - We consider parabolic equations of the form $$ u_{t}-\text{div} \left( |\nabla u|^{p-2}\nabla u+ a(x,t)|\nabla u|^{q-2}\nabla u\right)= 0, a(x,t)\geq 0. $$ In the range $\frac...  相似文献   

16.
In this paper,we consider the following chemotaxis model with ratio-dependent logistic reaction term u/t=D▽(▽u-u▽ω/ω)+u(α-bu/ω),(x,t)∈QT,ω/t=βu-δω,(x,t)∈QT,u▽㏑(u/w)·=0,x ∈Ω,0tT,u(x,0)=u0(x)0,x ∈,w(x,0)=w0(x)0,x ∈,It is shown that the solution to the problem exists globally if b+β≥0 and will blow up or quench if b+β0 by means of function transformation and comparison method.Various asymptotic behavior related to different coefficients and initial data is also discussed.  相似文献   

17.
18.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

19.
We study the existence of forced vibrations of nonlinear wave equation: (*) $$\begin{array}{*{20}c} {u_{tt} - u_{xx} + g(u) = f(x,t),} & {(x,t) \in (0,\pi ) \times R,} \\ {\begin{array}{*{20}c} {u(0,t) = u(\pi ,t) = 0,} \\ {u(x,t + 2\pi ) = u(x,t),} \\ \end{array} } & {\begin{array}{*{20}c} {t \in R,} \\ {(x,t) \in (0,\pi ) \times R,} \\ \end{array} } \\ \end{array}$$ whereg(ξ)∈C(R,R)is a function with superlinear growth and f(x, t) is a function which is 2π-periodic in t. Under the suitable growth condition on g(ξ), we prove the existence of infinitely many solution of (*) for any given f(x, t).  相似文献   

20.
The Volterra integrodifferential equation $$\begin{array}{*{20}c} {u_t (t,x) + \smallint '_0 a(t - s)( - \Delta u(s,x) + f(x,u(s,x)))ds = h(t,x),,} \\ {t > 0,x \in \Omega \subset R^N ,} \\ \end{array} $$ together with boundary and initial conditions is considered. The existence of global solutions (in time) is established under weak assumptions onf. An application in heat flow is also indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号