首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a primal-dual second-order corrector interior point algorithm for linear programming problems. At each iteration, the method computes a corrector direction in addition to the Ai–Zhang direction [Ai and Zhang in SIAM J Optim 16:400–417 (2005)], in an attempt to improve performance. The corrector is multiplied by the square of the step-size in the expression of the new iterate. We prove that the use of the corrector step does not cause any loss in the worst-case complexity of the algorithm. To our best knowledge, this is the first wide neighborhood second-order corrector algorithm enjoyed the low iteration bound of O(?nL){O(\sqrt{n}L)}, the same as the best known complexity results for interior point methods.  相似文献   

2.
In this paper we propose a new class of Mehrotra-type predictor-corrector algorithm for the monotone linear complementarity problems (LCPs). At each iteration, the method computes a corrector direction in addition to the Ai–Zhang direction (SIAM J Optim 16:400–417, 2005), in an attempt to improve performance. Starting with a feasible point \((x^0, s^0)\) in the wide neighborhood \(\mathcal {N}(\tau ,\beta )\), the algorithm enjoys the low iteration bound of \(O(\sqrt{n}L)\), where \(n\) is the dimension of the problem and \(L=\log \frac{(x^0)^T s^0}{\varepsilon }\) with \(\varepsilon \) the required precision. We also prove that the new algorithm can be specified into an easy implementable variant for solving the monotone LCPs, in such a way that the iteration bound is still \(O(\sqrt{n}L)\). Some preliminary numerical results are provided as well.  相似文献   

3.
Recently, Roos (SIAM J Optim 16(4):1110–1136, 2006) presented a primal-dual infeasible interior-point algorithm that uses full-Newton steps and whose iteration bound coincides with the best known bound for infeasible interior-point algorithms. In the current paper we use a different feasibility step such that the definition of the feasibility step in Mansouri and Roos (Optim Methods Softw 22(3):519–530, 2007) is a special case of our definition, and show that the same result on the order of iteration complexity can be obtained.   相似文献   

4.
Zhao  Ting  Liu  Hongwei  Liu  Zexian 《Numerical Algorithms》2021,87(4):1501-1534

In this paper, two new subspace minimization conjugate gradient methods based on p-regularization models are proposed, where a special scaled norm in p-regularization model is analyzed. Different choices of special scaled norm lead to different solutions to the p-regularized subproblem. Based on the analyses of the solutions in a two-dimensional subspace, we derive new directions satisfying the sufficient descent condition. With a modified nonmonotone line search, we establish the global convergence of the proposed methods under mild assumptions. R-linear convergence of the proposed methods is also analyzed. Numerical results show that, for the CUTEr library, the proposed methods are superior to four conjugate gradient methods, which were proposed by Hager and Zhang (SIAM J. Optim. 16(1):170–192, 2005), Dai and Kou (SIAM J. Optim. 23(1):296–320, 2013), Liu and Liu (J. Optim. Theory. Appl. 180(3):879–906, 2019) and Li et al. (Comput. Appl. Math. 38(1):2019), respectively.

  相似文献   

5.
This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming, which is an extension of the work of Roos (SIAM J. Optim. 16(4):1110–1136, 2006). The main iteration of the algorithm consists of a feasibility step and several centrality steps. We introduce a kernel function in the algorithm to induce the feasibility step. For parameter p∈[0,1], the polynomial complexity can be proved and the result coincides with the best result for infeasible interior-point methods, that is, O(nlog n/ε). This work was supported in part by the National Natural Science Foundation of China under Grant No. 10871098.  相似文献   

6.
We present an interior-point method for monotone linear complementarity problems over symmetric cones (SCLCP) that is based on barrier functions which are defined by a large class of univariate functions, called eligible kernel functions. This class is fairly general and includes the classical logarithmic function, the self-regular functions, as well as many non-self-regular functions as special cases. We provide a unified analysis of the method and give a general scheme on how to calculate the iteration bounds for the entire class. We also calculate the iteration bounds of both large-step and short-step versions of the method for ten frequently used eligible kernel functions. For some of them we match the best known iteration bound for large-step methods, while for short-step methods the best iteration bound is matched for all cases. The paper generalizes results of Lesaja and Roos (SIAM J. Optim. 20(6):3014–3039, 2010) from P (κ)-LCP over the non-negative orthant to monotone LCPs over symmetric cones.  相似文献   

7.
In this paper, we propose an infeasible interior-point algorithm for symmetric optimization problems using a new wide neighborhood and estimating the central path by an ellipse. In contrast of most interior-point algorithms for symmetric optimization which search an \(\varepsilon\)-optimal solution of the problem in a small neighborhood of the central path, our algorithm searches for optimizers in a new wide neighborhood of the ellipsoidal approximation of central path. The convergence analysis of the algorithm is shown and it is proved that the iteration bound of the algorithm is \(O ( r\log\varepsilon^{-1} ) \) which improves the complexity bound of the recent proposed algorithm by Liu et al. (J. Optim. Theory Appl., 2013,  https://doi.org/10.1007/s10957-013-0303-y) for symmetric optimization by the factor \(r^{\frac{1}{2}}\) and matches the currently best-known iteration bound for infeasible interior-point methods.  相似文献   

8.
In this paper we present a class of polynomial primal-dual interior-point algorithms for linear optimization based on a new class of kernel functions. This class is fairly general and includes the classical logarithmic function, the prototype self-regular function, and non-self-regular kernel functions as special cases. The analysis of the algorithms in the paper follows the same line of arguments as in Bai et al. (SIAM J. Optim. 15:101–128, [2004]), where a variety of non-self-regular kernel functions were considered including the ones with linear and quadratic growth terms. However, the important case when the growth term is between linear and quadratic was not considered. The goal of this paper is to introduce such class of kernel functions and to show that the interior-point methods based on these functions have favorable complexity results. They match the currently best known iteration bounds for the prototype self-regular function with quadratic growth term, the simple non-self-regular function with linear growth term, and the classical logarithmic kernel function. In order to achieve these complexity results, several new arguments had to be used. This research is partially supported by the grant of National Science Foundation of China 10771133 and the Program of Shanghai Pujiang 06PJ14039.  相似文献   

9.
基于一类带有参数theta的新方向, 提出了求解单调线性互补问题的宽邻 域路径跟踪内点算法, 且当theta=1时即为经典牛顿方向. 当取theta为与问题规模 n无关的常数时, 算法具有O(nL)迭代复杂性, 其中L是输入数据的长度, 这与经典宽邻 域算法的复杂性相同; 当取theta=\sqrt{n/\beta\tau}时, 算法具有O(\sqrt{n}L)迭代复杂性, 这里的\beta, \tau是邻域参数, 这与窄邻域算法的复杂性相同. 这是首次研究包括经典宽邻域路径跟踪算法的一类内点算法, 给出了统一的算法框架和收敛性分析方法.  相似文献   

10.
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step, which targets the μ +-center of the next pair of perturbed problems. As for the centering steps, we apply a sharper quadratic convergence result, which leads to a slightly wider neighborhood for the feasibility steps. Moreover, the analysis is much simplified and the iteration bound is slightly better.  相似文献   

11.
In this paper, we present primal-dual interior-point methods for convex quadratic optimization based on a finite barrier, which has been investigated earlier for the case of linear optimization by Bai et al. (SIAM J Optim 13(3):766–782, 2003). By means of the feature of the finite kernel function, we study the complexity analysis of primal-dual interior-point methods based on the finite barrier and derive the iteration bounds that match the currently best known iteration bounds for large- and small-update methods, namely, $O(\sqrt{n}\log{n}\log{\frac{n}{\varepsilon}})$ and $O(\sqrt{n}\log{\frac{n}{\varepsilon}})$ , respectively, which are as good as the linear optimization analogue. Numerical tests demonstrate the behavior of the algorithms with different parameters.  相似文献   

12.
We present a new infeasible-interior-point method, based on a wide neighborhood, for symmetric cone programming. The convergence is shown for a commutative class of search directions, which includes the Nesterov–Todd direction and the xs and sx directions. Moreover, we derive the complexity bound of the wide neighborhood infeasible interior-point methods that coincides with the currently best known theoretical complexity bounds for the short step path-following algorithm.  相似文献   

13.
Roos [C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization. SIAM J. Optim. 16 (4) (2006) 1110-1136 (electronic)] proposed a new primal-dual infeasible interior-point method for linear optimization. This new method can be viewed as a homotopy method. In this work, we show that the homotopy path has precisely one accumulation point in the optimal set. Moreover, this accumulation point is the analytic center of a subset of the optimal set and depends on the starting point of the infeasible interior-point method.  相似文献   

14.
《Optimization》2012,61(2):169-191
We present an analysis of the full-Newton step infeasible interior-point algorithm for semidefinite optimization, which is an extension of the algorithm introduced by Roos [C. Roos, A full-Newton step 𝒪(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim. 16 (2006), pp. 1110–1136] for the linear optimization case. We use the proximity measure σ(V)?=?‖I???V 2‖ to overcome the difficulty of obtaining an upper bound of updated proximity after one full-Newton step, where I is an identity matrix and V is a symmetric positive definite matrix. It turns out that the complexity analysis of the algorithm is simplified and the iteration bound obtained is improved slightly.  相似文献   

15.

In this paper, we investigate a new primal-dual long-step interior point algorithm for linear optimization. Based on the step size, interior point algorithms can be divided into two main groups, short-step, and long-step methods. In practice, long-step variants perform better, but usually, a better theoretical complexity can be achieved for the short-step methods. One of the exceptions is the large-update algorithm of Ai and Zhang. The new wide neighborhood and the main characteristics of the presented algorithm are based on their approach. In addition, we use the algebraic equivalent transformation technique of Darvay to determine new modified search directions for our method. We show that the new long-step algorithm is convergent and has the best known iteration complexity of short-step variants. We present our numerical results and compare the performance of our algorithm with two previously introduced Ai-Zhang type interior point algorithms on a set of linear programming test problems from the Netlib library.

  相似文献   

16.
本文把艾文宝的邻域跟踪算法推广到对称锥规划, 定义中心路径的宽邻域N(τ, β), 并证明该邻域的一个重要性质, 该性质在算法的复杂性分析中起到关键作用. 取宽邻域N(τ, β) 中一点为初始点并采用Nesterov-Todd (NT) 搜索方向, 则该算法的迭代复杂界为O(√r logε-1), 其中, r是EuclidJordan 代数的秩, ε是允许误差. 这是对称锥规划的宽邻域内点算法最好的复杂界.  相似文献   

17.
This paper establishes a theoretical framework of infeasible Mehrotra-type predictor–corrector algorithm for nonmonotone nonlinear complementarity problems over symmetric cones which can be regarded as an extension the Mehrotra’s algorithm proposed by Salahi et al. (On Mehrotra-type predictor–corrector algorithms. SIAM J Optim 18(4):1377–1397, 2005) from nonnegative orthant to symmetric cone. The iteration complexity of the algorithm is estimated, and some numerical results are provided. The numerical results show that the algorithm is efficient and reliable.  相似文献   

18.
《Optimization》2012,61(1):3-17
Two inexact versions of a Bregman-function-based proximal method for finding a zero of a maximal monotone operator, suggested in [J. Eckstein (1998). Approximate iterations in Bregman-function-based proximal algorithms. Math. Programming, 83, 113–123; P. da Silva, J. Eckstein and C. Humes (2001). Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim., 12, 238–261], are considered. For a wide class of Bregman functions, including the standard entropy kernel and all strongly convex Bregman functions, convergence of these methods is proved under an essentially weaker accuracy condition on the iterates than in the original papers.

Also the error criterion of a logarithmic–quadratic proximal method, developed in [A. Auslender, M. Teboulle and S. Ben-Tiba (1999). A logarithmic-quadratic proximal method for variational inequalities. Computational Optimization and Applications, 12, 31–40], is relaxed, and convergence results for the inexact version of the proximal method with entropy-like distance functions are described.

For the methods mentioned, like in [R.T. Rockafellar (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14, 877–898] for the classical proximal point algorithm, only summability of the sequence of error vector norms is required.  相似文献   

19.
We present a predictor-corrector path-following interior-point algorithm for \(P_*(\kappa )\) horizontal linear complementarity problem based on new search directions. In each iteration, the algorithm performs two kinds of steps: a predictor (damped Newton) step and a corrector (full Newton) step. The full Newton-step is generated from an algebraic reformulation of the centering equation, which defines the central path and seeks directions in a small neighborhood of the central path. While the damped Newton step is used to move in the direction of optimal solution and reduce the duality gap. We derive the complexity for the algorithm, which coincides with the best known iteration bound for \(P_*(\kappa )\) -horizontal linear complementarity problems.  相似文献   

20.
In this paper we propose a primal-dual path-following interior-point algorithm for second-order cone optimization. The algorithm is based on a new technique for finding the search directions and the strategy of the central path. At each iteration, we use only full Nesterov–Todd step. Moreover, we derive the currently best known iteration bound for the algorithm with small-update method, namely, , where N denotes the number of second-order cones in the problem formulation and ε the desired accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号