首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare-earth metal alkyl tri(tert-butoxy)silanolate complexes [Ln{mu,eta2-OSi(O(t)Bu)3}(CH2SiMe3)2]2 (Ln = Y (1), Tb (2), Lu (3)) were prepared via protonolysis of the appropriate tris(alkyl) complex [Ln(CH2SiMe3)3(thf)2] with tri(tert-butoxy)silanol in pentane. Crystal structure analysis revealed a dinuclear structure for with square pyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta2-bridging coordination mode giving a 4-rung truncated ladder and non-crystallographic inversion centre. Addition of two equiv. of 12-crown-4 to a pentane solution of 1 or 3 respectively gave [Ln{OSi(O(t)Bu)(3)}(CH2SiMe3)2(12-crown-4)].12-crown-4 (Ln = Y (4), Lu (5)). Crystal structure analysis of 5 showed a slightly distorted octahedral geometry at the lutetium centre. The silanolate ligand adopts an eta(1)-terminal coordination mode, whilst the crown ether unit coordinates in an unusual kappa3-fashion. Reaction of 1-3 with [NEt3H]+[BPh4]- in thf yielded the cationic derivatives [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[BPh4]- (Ln = Y (6), Tb (7) and Lu (8)); coordination of crown ether led to compounds of the form [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(L)(thf)n]+[BPh4]- (Ln = Y, Lu, L = 12-crown-4, n = 1 (9,10); Ln = Y, Lu, L = 15-crown-5, n = 0 (11,12)). Reaction of 1 with [NMe2PhH]+[B(C6F5)4]-, [Al(CH2SiMe3)3] or BPh3 in thf gave the ion pairs [Y{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[A]- ([A]- = [B(C6F5)4]- (13), [Al(CH2SiMe3)4]- (14), [BPh3(CH2SiMe3)]- (15)), whilst two equiv. [NMe2PhH]+[BPh4]- with 1 in thf produced the dicationic ion triple [Y{OSi(O(t)Bu)3}(thf)6]2+[BPh4]-2 (16). Crystal structure analysis revealed that 16 is mononuclear with pentagonal bipyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta(1)-terminal fashion. All diamagnetic compounds have been characterized by NMR spectroscopy. 1, 3, 4, 6 and 13 were tested as olefin hydrosilylation pre-catalysts with a variety of substrates; 1 was found to be highly active in 1-decene hydrosilylation.  相似文献   

2.
A new class of homoleptic organoamido rare earth complexes [Ln(L(Me) or L(Et))(3)] (Ln = La, Ce, Nd; L(Me/Et) = p-HC(6)F(4)N(CH(2))(2)NMe(2)/Et(2)) exhibiting (Ar)CF-Ln interactions has been isolated from redox-transmetallation/protolysis (RTP) reactions between the free metals, Hg(C(6)F(5))(2) and L(Me/Et)H in tetrahydrofuran, together with low yields of [Ln(L(Me))(2)F](3) (Ln = La, Ce) or [Nd(L(Et))(2)F](2) species, resulting from C-F activation reactions. The structures of the homoleptic complexes have eight-coordinate Ln metals with two tridentate (N,N',F) amide ligands including (Ar)CF-Ln bonds and either a bidentate (N,F) ligand (Ln = La, Ce, Nd; L(Et)) or a bidentate (N,N') ligand (Ln = Nd; L(Me)), in an unusual case of linkage variation. All (Ar)CF-Ln bond lengths are shorter than or similar to the corresponding Ln-NMe(2)/Et(2) bond lengths. In [Ln(L(Me))(2)F](3) (Ln = La, Ce) complexes, there is a six-membered ring framework with alternating F and Ln atoms and the metal atoms are eight-coordinate with two tridentate (N,N',F) L(Me) ligands, whilst [Nd(L(Et))(2)F](2) is a fluoride-bridged dimer.  相似文献   

3.
To expand the limited range of rare-earth metal cationic alkyl complexes known, a series of mono- and dicationic trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands with [BPh4]-, [BPh3(CH2SiMe3)]-, [B(C6F5)4]-, [B(C6F5)3(CH2SiMe3)]-, and [Al(CH2SiMe3)4]- anions were prepared from corresponding neutral precursors [Ln(CH2SiMe3)3Ln] (Ln = Sc, Y, Lu; L = THF, n = 2 or 3; L = 12-crown-4, n = 1) as solvent-separated ion pairs. The syntheses of the monocationic derivatives [Ln(CH2SiMe3)2(12-crown-4)n(THF)m]+[A]- are all high yielding and proceed rapidly in THF solution at room temperature. A "one pot" procedure using the neutral species directly for the syntheses of a number of lutetium and yttrium dicationic derivatives [Ln(CH2SiMe3)(12-crown-4)n(THF)m]2+[A]-2 with a variety of different anions, a class of compounds previously limited to just a few examples, is presented. When BPh3 is used to generate the ion triple, the presence of 12-crown-4 is required for complete conversion. Addition of a second equiv of 12-crown-4 and a third equiv of [NMe2PhH]+[B(C6F5)4]- abstracts a third alkyl group from [Ln(CH2SiMe3)(12-crown-4)2(THF)x]2+[B(C6F5)4]-2 (Ln = Y, Lu). X-ray crystallography and variable-temperature (VT) NMR spectroscopy reveal a structural diversity within the known series of neutral 12-crown-4 supported tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(12-crown-4)] (Ln = Sc, Y, Sm, Gd-Lu) in the solid and solution states. The X-ray structure of [Sc(CH2SiMe3)3(12-crown-4)] exhibits incomplete 12-crown-4 coordination. VT NMR spectroscopy indicates fluxional 12-crown-4 coordination on the NMR time scale. X-ray crystallography of only the second structurally characterized dicationic rare-earth metal alkyl complex [Y(CH2SiMe3)(12-crown-4)(THF)3]2+[BPh4]-2 shows exocyclic 12-crown-4 coordination at the 8-coordinate metal center with well separated counteranions. 11B and 19F NMR spectroscopy of all mono- and dicationic rare-earth metal complexes reported demonstrate that the anions are symmetrical and noncoordinating on the NMR time scale. A series of trends within the 1H and 13C{1H} NMR resonances arising from the Ln-CH2 groups and, in the case of yttrium, the 1JYC coupling constants at the Y-CH2 group and the 89Y chemical shift values are discussed.  相似文献   

4.
Treatment of the appropriate sodium beta-diketiminate NaL or NaL' with an equivalent portion of TlCl in thf under mild conditions furnishes in good yield the first structurally characterised thallium beta-diketiminates: the monomeric, orange, crystalline Tl(I) complexes TlL and TlL' [L = {N(SiMe3)C(Ph)}2CH, L' = {N(C6H3Pr(i)(2)-2,6)C(H)}2CPh].  相似文献   

5.
Simple silylamine elimination reactions of calix[4]-pyrrole [R(2)C(C(4)H(2)NH)](4) (R = Me (1), {-(CH(2))(5)-}(0.5) (2)) with 2 equiv. of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) (Ln = Nd, Sm, Dy) in reflux toluene, afforded the novel dinuclear alkali metal-free trivalent lanthanide amido complexes (η(5):η(1):η(5):η(1)-R(8)-calix[4]-pyrrolyl){LnN(SiMe(3))(2)}(2) (R = Me, Ln = Nd (3), Sm (4), Dy (5); R = {-(CH(2))(5)-}(0.5), Ln = Nd (6), Sm(7)). The complexes were fully characterized by elemental analyses, spectroscopic analyses and single-crystal X-ray analyses. X-ray diffraction studies showed that each lanthanide metal was supported by bispyrrolyl anions in an η(5) fashion and along with three nitrogen atoms from N(SiMe(3))(2) and two other pyrroyl rings in η(1) modes formed the novel bent-sandwiched lanthanide amido bridged trivalent lanthanide amido complexes, similar to ansa-cyclopentadienyl ligand-supported lanthanide amides with respect to each metal center. The catalytic activities of these organolanthanide complexes as single component l-lactide polymerization catalysts were studied.  相似文献   

6.
Han F  Teng Q  Zhang Y  Wang Y  Shen Q 《Inorganic chemistry》2011,50(6):2634-2643
The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y < Nd < La. The amine elimination of Ln[N(TMS)(2)](3) with the bulky bidentate Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Pr(i)(2)-C(6)H(3)) afforded the monoamido lanthanide complexes L'(2)LnN(TMS)(2) (Ln = Yb (9), Y (10), Nd (11), and La (12)). While the amine elimination with the less bulky Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Me(2)-C(6)H(3)) yielded the desired monoamido complexes with the small metals of Y and Yb, L'(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L'(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.  相似文献   

7.
Niemeyer M 《Inorganic chemistry》2006,45(22):9085-9095
The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.  相似文献   

8.
Reaction of rare earth metal-alkyl complexes [Ln(CH2SiMe3)3(THF)2](Ln = Y, Lu) with B(C6X5)3(X = H, F) in the presence of crown ethers gives crystallographically characterized ion pairs [Ln(CH2SiMe3)2(CE)(THF)n]+[B(CH2SiMe3)(C6X5)3]-(CE = [12]-crown-4, n = 1; CE = [15]-crown-5 and [18]-crown-6, n = 0).  相似文献   

9.
Reaction of [Ln(CH(2)SiMe(3))(2)(THF)(n)][BPh(4)] (Ln = Sc, Y, Lu ; n = 3, 4) with Li{B(NArCH)(2)}(THF)(2) (Ar = 2,6-C(6)H(3)(i)Pr(2)) formed the first group 3 and lanthanide boryl compounds, Sc{B(NArCH)(2)}(CH(2)SiMe(3))(2)(THF) and Ln{B(NArCH)(2)}(CH(2)SiMe(3))(2)(THF)(2) (Ln = Y, Lu), which contain two-center, two-electron Ln-B σ bonds. All of these systems were crystallographically characterized. Density functional theory analysis of the Ln-B bonding found it to be predominantly ionic, with covalent character in the σ-bonding Ln-B HOMO.  相似文献   

10.
Wang Y  Robinson GH 《Inorganic chemistry》2011,50(24):12326-12337
This article highlights recent efforts of this laboratory in the stabilization of highly reactive, low-oxidation-state, main-group molecules using bulky N-heterocyclic carbene ligands [L: = :C{N(2,6-Pr(i)(2)C(6)H(3))CH}(2); L': = :C{N(2,4,6-Me(3)C(6)H(2))CH}(2); L': = :C{(i-Pr)NC(Me)}(2)]. The syntheses, structures, and computational studies of carbene-stabilized neutral diborenes [L:(H)B═B(H):L and L':(H)B═B(H):L'], a neutral Ga(6) octahedron (L':Ga[Ga(4)Mes(4)]Ga:L'), disilicon (L:Si═Si:L), bis-silylene [L:(Cl)Si-Si(Cl):L], dipnictogens (L:E-E:L, E = P, As; L':P-P:L'), and parent phosphinidene (L:PH) are discussed. Some of the unique challenges associated with this "carbene-stabilization" strategy are also presented.  相似文献   

11.
The N,N',S-donor ligand 4-methoxy-3,5-dimethyl-2-((3-(2-(methylthio)phenyl)-1H-pyrazol-1-yl)methyl)pyridine (L) was prepared from 2-(chloromethyl)-4-methoxy-3,5-dimethylpyridine hydrochloride and 3-(2-(methylthio)phenyl)-1H-pyrazole. The Cu(I) complexes [Cu2(L)2CH3CN][Cu(L)CH3CN](BF4)3 (1), [Cu(L)PPh3]BF4 (2), and [Cu6(L)2(C6F5S)6] (3) were prepared and characterized by X-ray crystallography (PPh3=triphenylphosphine, C6F5S-=pentafluorothiophenolate). The unit cell of compound 1 consists of cocrystallized mononuclear and dinuclear entities in which all of the copper atoms exhibit distorted tetrahedral coordination. Compound 2 is monomeric with L bound in the kappa3-N,N',S mode and a PPh3 molecule that completes the coordination environment. Compound 2 presents a fluxional behavior in CDCl3 solution due to the boat inversion of the six-membered N,N' chelate ring (DeltaH=+43.6(3) kJ mol(-1), DeltaS=-16(1) J mol(-1) K(-1)). Crystallization of 3 in acetonitrile leads to a polynuclear structure that contains a CH3CN molecule coordinated to one of the copper atoms: [Cu6(L)2(C6F5S)6CH3CN] (3a). The core of 3a partially resembles a {Cu4S6} adamantane-like moiety, the only difference being that the Cu-NCCH3 interaction leads to the opening of the cluster by disrupting a Cu-Cu interaction. Part of this assembly is found in the yeast metallothionein copper(I)-cysteinate core whose crystal structure has recently been reported. Two additional [Cu(L)]+ peripheral moieties interact with the cluster by means of bridging thiolates. ESI-mass spectrometry, conductivity measurements, and 1H/19F pulsed gradient spin echo (PGSE) NMR experiments suggest that 3a dissociates in acetonitrile solution: 3a+CH3CN-->[Cu4(C6F5S)6]2-+2[Cu(L)CH3CN]+. The stability of the cluster with respect to the hypothetical mononuclear species, [Cu(L)(C6F5S)], is confirmed by DFT calculations (B3LYP), which illustrate the exergonic character of the reaction: 6[Cu(L')(C6H5S)]-->[Cu6(L')2(C6H5S)6]+4L' (DeltaG298=-58.6 kJ mol(-1), where L' and C6H5S- are simplified models for L and C6F5S-, respectively). The energetics pertinent to the ionic dissociation of the cluster in acetonitrile is computed using the polarizable continuum model (PCM) approach.  相似文献   

12.
Hydrothermal reactions of the lanthanide chlorides with MeN(CH2CO2H)(CH2PO3H2), (H3L1) (or Me2NCH2PO3H2, H2L2) and sodium oxalate lead to seven new lanthanide oxalate phosphonate hybrids with three types of 3D network structures, namely, [Ln(C2O4){MeNH(CH2CO2)(CH2PO3H)}]0.5 H2O (Ln=Nd: 1; Eu: 2; Gd: 3), [Ln4(C2O4)5(Me2NHCH2PO3)2(H2O)4]2 H2O (Ln=La: 4, Nd: 5), [Ln3(C2O4)4(Me2NHCH2PO3)(H2O)6]6 H2O (Gd: 6, Er: 7). Their structures have been established by X-ray single-crystal diffraction. Complexes 1-3 are isostructural and feature a 3D network formed by the interconnection of 3D network of {Ln(H2L1)}2+ with 1D chains of {Ln(C2O4)}+. Complexes 4 and 5 are isostructural and feature a complex 3D network built from 3D network of lanthanide oxalate and {Ln4(HL2)2} units. The isostructural 6 and 7 form another type of 3D network composed of porous lanthanide-oxalate network inserted by 1D chains of lanthanide-oxalate phosphonate. Compounds 1, 5 and 7 are luminescent materials in the near IR region. Compounds 3 and 6 exhibit a broad blue fluorescent emission band at 451 and 467 nm, respectively. Compound 2 displays very strong and sharp emission bands at 592, 616 and 699 nm with a long luminescent lifetime of 1.13 ms.  相似文献   

13.
The yttrium, cerium and magnesium bis(trimethylsilyl)methyls [Ln[CH(SiMe3)2]3][Ln = Y (1), Ce (2)], and the known compound Mg[[CH(SiMe3)2]2 (C) and [Mg(mu-Br)[CH(SiMe3)2](OEt2)]2 (D) formed the crystalline nitrile adducts [1(NCBut)2] (5), [2(NCPh)] (6), [C(NCR)2][R = But (8), Ph (9), C6H3Me2-2,6 (10)] and [Mg(mu-Br)[CH(SiMe3)2](NCR)]2 [R = But (11), Ph (12), C6H3Me2-2,6 (13)], rather than beta-diketiminato-metal insertion products. The beta-diketiminato-cerium complex [Ce[(N(SiMe3)C(C6H4But-4))2CH][N(SiMe3)2]2] (16) was obtained from [Ce[N(SiMe3)2]3] and the beta-diketimine H[[N(SiMe3)C(C6H4But-4)]2CH]]. The cerium alkyl 2 and [Ln[CH(SiMe3)(SiMe2OMe)]3][Ln = Y (3), Ce (4)] were obtained from the appropriate lithium alkyl precursor and [Ce(OC6H2But2-2,6-Me-4)3] or LnCl3, respectively. Heating complex 3 with benzonitrile in toluene afforded 2,2-dimethyl-4,6-diphenyl-5-trimethylsilyl-1,3-diaza-2-silahexa-1,3-diene (7), a member of a new class of heterocycles. The X-ray structures of the crystalline compounds, D, [Mg[CH(SiMe3)2]2(OEt2)2], the known [Ce(Cl)[(N(SiMe3)C(Ph))2CH]2] (E) and 16 are reported. The cerium alkyl (like 1) has one close Ce...C contact for each ligand, attributed to a gamma-C-Ce agostic interaction. The Ln alkyls and have a trigonal prismatic arrangement of the chelating ligands (each of the same chirality at Calpha) around the metal. In an arene solution at 313 K exists as two isomers, as evident from detailed NMR spectroscopic experiments.  相似文献   

14.
The use of kinetically robust chromium(III) fluorido complexes as synthons for mixed 3d-4f clusters is reported. The tendency toward linear {Cr(III)-F-Ln(III)} units dictates the cluster topology. Specifically, we show that reaction of cis-[Cr(III)F(2)(NN)(2)]NO(3) (NN = 1,10-phenanthroline ("phen") or 2,2'-bipyridine ("bpy")) with Ln(NO(3))(3)·xH(2)O produces isostructural series of molecular {Ln(2)Cr(2)} squares (1-9) with linear fluoride bridges. In a parallel fashion, fac-[Cr(III)F(3)L], where L = N,N',N″-trimethyl-1,4,7-triazacyclononane ("Me(3)tacn"), reacts with Nd(NO(3))(3)·6H(2)O to form a fluoride-centered penta-nuclear complex and fac-[Cr(III)F(3)L'], with L' = 1,1,1-tris-((methylamino)methylethane) ("Me(3)tame"), reacts with [Ln(hfac)(3)(H(2)O)(2)] (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone) to yield an isostructural series of {Ln(3)Cr(2)} (10-14) trigonal bipyramids with no central ligand. The formation of the latter is accompanied by a partial solvolysis of the Cr(III) precursor but without formation of insoluble LnF(3). The magnetic properties of the gadolinium containing clusters allow quantification of fluoride-mediated, antiferromagnetic Gd-Cr exchange interactions of magnitude between 0.14 cm(-1) and 0.71 cm(-1) (? = J(12)?(1)·?(2) formalism) and vanishingly small J(Gd-Gd) of 0.06(0) cm(-1). The large spin and small anisotropy together with weak exchange interactions in the {Gd(3)Cr(2)} (11) cluster give rise to a very large magneto-caloric effect of -ΔS(m) = 28.7 J kg(-1) K(-1) (μ(0)H = 90 to 0 kOe).  相似文献   

15.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   

16.
The reaction of YbI(2) with KTp(Me2) gives (Tp(Me2))YbI(THF)(2) (1-Yb) as a thermally unstable product. Use of the more hindered KTp(tBu,Me) gave (Tp(tBu,Me))LnI(THF)(n) (Ln = Sm, n = 2, 2-Sm; Ln = Yb, n = 1, 2-Yb). The crystal structures of both these compounds are reported. Adducts with neutral ligands such as pyridines and isonitriles can be prepared and the crystal structures of [(Tp(tBu,Me))YbIL(n)] (L = CN(t)Bu, n = 1; L = 3,5-lutidine, n = 2) are described. 2-Sm can be oxidized using AgBPh(4) to give [(Tp(tBu,Me))SmI(THF)(2)]BPh(4). Compounds 2-Sm and 2-Yb are useful starting materials for the preparation of heteroleptic compounds by metathesis with appropriate potassium reagents. The preparations and characterization of the hydrocarbyls (Tp(tBu,Me))Ln{CH(SiMe(3))(2)} (Ln = Sm, 5-Sm; Yb, 5-Yb) and [(Tp(tBu,Me))Ln{CH(2)(SiMe(3))}(THF)] (Ln = Yb, 6a-Yb) and the triethylborohydrides [(Tp(tBu,Me))Ln(HBEt(3))(THF)(n)] (Ln = Sm, n = 0, 7-Sm; Yb, n = 1, 7-Yb) are reported, as well as the crystal structures of 5-Sm and 5-Yb, and the THF adducts 6a-Yb and [(Tp(tBu,Me))Sm{CH(SiMe(3))(2)}(THF)], 5a-Sm.  相似文献   

17.
Five new heteroleptic lanthanide(III) phenolate compounds have been synthesised in high yield, four via a transamination reaction between Ln(N(SiMe(3))2)3 and two equivalents of the phenol, HOC(6)H(2)(2,4-Bu(t))-6-CH(2)N(Me)CH(2)CH(2)NMe(2) [corrected] (LH) in thf {L(2)LnN(SiMe(3))2 where Ln = La (1); Nd (2); Sm (3); Yb (4)}. The fifth compound, [L(2)La][BPh(4)] 5 was formed by conversion of 1 by treatment with one equivalent of [Et(3)NH][BPh(4)] in toluene. Compound 3 was subjected to a single-crystal X-ray analysis and revealed a five-coordinate, distorted trigonal bipyramidal samarium(III) metal centre where each phenolate ligand is bidentate coordinating through the phenolate oxygen and nitrogen yielding six-membered chelate rings. Compound 1 exhibited fluxional behaviour in C(4)D(8)O solution which was temperature dependent. All five compounds were assessed as catalyst precursors towards the ring-opening polymerisation of both L-lactide and epsilon-caprolactone. These polymerisation studies revealed that catalysts containing larger lanthanide metals were more efficacious than those with smaller lanthanide metals. Furthermore, replacement of the [N(SiMe(3))2] initiating group in 1 with [BPh(4)] in 5 reduced catalytic activity by this compound. Detailed kinetics analysis of the ring-opening polymerisation of L-lactide by compound 1, the most efficacious catalyst precursor analysed in this study, revealed the following rate law: -d[LA]/dt = k[LA](2)[1](1) which is second order in lactide and first order in catalyst. End-group analysis by ESI mass spectrometry revealed the presence of phenolate end-groups and lactide cycles, the latter formed by intra-molecular, intrachain transesterification.  相似文献   

18.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

19.
The tetracyclic dilithio-Si,Si'-oxo-bridged bis(N,N'-methylsilyl-beta-diketiminates) 2 and 3, having an outer LiNCCCNLiNCCCN macrocycle, were prepared from [Li{CH(SiMe(3))SiMe(OMe)(2)}](infinity) and 2 PhCN. They differ in that the substituent at the beta-C atom of each diketiminato ligand is either SiMe(3) (2) or H (3). Each of and has (i) a central Si-O-Si unit, (ii) an Si(Me) fragment N,N'-intramolecularly bridging each beta-diketiminate, and (iii) an Li(thf)(2) moiety N,N'-intermolecularly bridging the two beta-diketiminates (thf = tetrahydrofuran). Treatment of [Li{CH(SiMe(3))(SiMe(2)OMe)}](8) with 2Me(2)C(CN)(2) yielded the amorphous [Li{Si(Me)(2)((NCR)(2)CH)}](n) [R = C(Me)(2)CN] (4). From [Li{N(SiMe(3))C(Bu(t))C(H)SiMe(3)}](2) (A) and 1,3- or 1,4-C(6)H(4)(CN)(2), with no apparent synergy between the two CN groups, the product was the appropriate (mu-C(6)H(4))-bis(lithium beta-diketiminate) 6 or 7. Reaction of [Li{N(SiMe(3))C(Ph)=C(H)SiMe(3)}(tmeda)] and 1,3-C(6)H(4)(CN)(2) afforded 1,3-C(6)H(4)(X)X' (X =CC(Ph)N(SiMe3)Li(tmeda)N(SiMe3)CH; X' = CN(SiMe3)Li(tmeda)NC(Ph)=C(H)SiMe3)(9). Interaction of A and 2[1,2-C(6)H(4)(CN)(2)] gave the bis(lithio-isoindoline) derivative [C6H4C(=NH)N{Li(OEt2)}C=C(SiMe3)C(Bu(t))=N(SiMe3)]2 (5). The X-ray structures of 2, 3, 5 and 9 are presented, and reaction pathways for each reaction are suggested.  相似文献   

20.
Wang Q  Xiang L  Song H  Zi G 《Inorganic chemistry》2008,47(10):4319-4328
A new series of amidolanthanides have been prepared from the reactions between Ln[N(SiMe3)2]3 and the chiral NNO ligands, (S)-2-(pyrrol-2-ylmethyleneamino)-2'-hydroxy-6,6'-dimethyl-1,1'-biphenyl (2H2) and (S)-5,5',6,6',7,7',8,8'-octahydro-2-(pyrrol-2-ylmethyleneamino)-2'-hydroxy-1,1'-binaphthyl (3H2), which are synthesized from the condensation of pyrrole-2-carboxaldehyde with 1 equiv of (S)-2-amino-2'-hydroxy-6,6'-dimethyl-1,1'-biphenyl or (S)-5,5',6,6',7,7',8,8'-octahydro-2-amino-2'-hydroxy-1,1'-binaphthyl, in the presence of molecular sieves at 70 degrees C, respectively. Treatment of 2H2 with 1 equiv of Ln[N(SiMe3)2]3 (Ln=Sm, Yb) in toluene under reflux, followed by recrystallization from a toluene solution, gives the dimeric amido complexes, {2-SmN(SiMe3)2}2.0.5C7H8 (6.0.5C7H8) and {2-YbN(SiMe3)2} 2.1.5C7H8(8.1.5C7H8), in good yields. While under similar reaction conditions, the reaction of 2H2 with 1 equiv of Y[N(SiMe3)2]3 leads to the isolation of a mixture of {2-YN(SiMe3)2}2 (7a) and {(2)2Y}Y[N(SiMe3)2]2(7b) in 82% total yield; the reaction of 3H2 with 1 equiv of Ln[N(SiMe3)2]3 (Ln=Y, Yb) gives the trinuclear complexes, {(3)2Ln}2LnN(SiMe3) 2.1.5C7H8 (Ln=Y(9.1.5C7H8), Yb(10.1.5C7H8)), in good yields. All compounds have been characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of compounds 2H2 and 6- 10 have been further confirmed by X-ray diffraction analyses. Complexes 6- 9 are active catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in good yields with moderate ee values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号