首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Let E be a vector bundle of rank r over an irreducible smooth projective curve X defined over the field ${\overline{{\mathbb F}}_p}$ F ¯ p . For fixed integers ${r_1\, , \ldots\, , r_\nu}$ r 1 , ... , r ν with ${1\, \leq\, r_1\, <\, \cdots\, <\, r_\nu\, <\, r}$ 1 ≤ r 1 < ? < r ν < r , let ${\text{Fl}(E)}$ Fl ( E ) be the corresponding flag bundle over X associated to E. Let ${\xi\, \longrightarrow \, {\rm Fl}(E)}$ ξ ? Fl ( E ) be a line bundle such that for every pair of the form ${(C\, ,\phi)}$ ( C , ? ) , where C is an irreducible smooth projective curve defined over ${\overline{\mathbb F}_p}$ F ¯ p and ${\phi\, :\, C\, \longrightarrow\, {\rm Fl}(E)}$ ? : C ? Fl ( E ) is a nonconstant morphism, the inequality ${{\rm degree}(\phi^* \xi)\, > \, 0}$ degree ( ? ? ξ ) > 0 holds. We prove that the line bundle ${\xi}$ ξ is ample.  相似文献   

2.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

3.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

4.
It is assumed that a Kripke–Joyal semantics ${\mathcal{A} = \left\langle \mathbb{C},{\rm Cov}, {\it F},\Vdash \right\rangle}$ A = C , Cov , F , ? has been defined for a first-order language ${\mathcal{L}}$ L . To transform ${\mathbb{C}}$ C into a Heyting algebra ${\overline{\mathbb{C}}}$ C ¯ on which the forcing relation is preserved, a standard construction is used to obtain a complete Heyting algebra made up of cribles of ${\mathbb{C}}$ C . A pretopology ${\overline{{\rm Cov}}}$ Cov ¯ is defined on ${\overline{\mathbb{C}}}$ C ¯ using the pretopology on ${\mathbb{C}}$ C . A sheaf ${\overline{{\it F}}}$ F ¯ is made up of sections of F that obey functoriality. A forcing relation ${\overline{\Vdash}}$ ? ¯ is defined and it is shown that ${\overline{\mathcal{A}} = \left\langle \overline{\mathbb{C}},\overline{\rm{Cov}},\overline{{\it F}}, \overline{\Vdash} \right\rangle }$ A ¯ = C ¯ , Cov ¯ , F ¯ , ? ¯ is a Kripke–Joyal semantics that faithfully preserves the notion of forcing of ${\mathcal{A}}$ A . That is to say, an object a of ${\mathbb{C}Ob}$ C O b forces a sentence with respect to ${\mathcal{A}}$ A if and only if the maximal a-crible forces it with respect to ${\overline{\mathcal{A}}}$ A ¯ . This reduces a Kripke–Joyal semantics defined over an arbitrary site to a Kripke–Joyal semantics defined over a site which is based on a complete Heyting algebra.  相似文献   

5.
Denoting by ${\varepsilon\subseteq\mathbb{R}^2}$ the set of the pairs ${(\lambda_1(\Omega),\,\lambda_2(\Omega))}$ for all the open sets ${\Omega\subseteq\mathbb{R}^N}$ with unit measure, and by ${\Theta\subseteq\mathbb{R}^N}$ the union of two disjoint balls of half measure, we give an elementary proof of the fact that ${\partial\varepsilon}$ has horizontal tangent at its lowest point ${(\lambda_1(\Theta),\,\lambda_2(\Theta))}$ .  相似文献   

6.
Let $G$ be a complex affine algebraic reductive group, and let $K\,\subset \, G$ be a maximal compact subgroup. Fix h $\,:=\,(h_{1}\,,\ldots \,,h_{m})\,\in \, K^{m}$ . For $n\, \ge \, 0$ , let $\mathsf X _{\mathbf{{h}},n}^{G}$ (respectively, $\mathsf X _{\mathbf{{h}},n}^{K}$ ) be the space of equivalence classes of representations of the free group on $m+n$ generators in $G$ (respectively, $K$ ) such that for each $1\le i\le m$ , the image of the $i$ -th free generator is conjugate to $h_{i}$ . These spaces are parabolic analogues of character varieties of free groups. We prove that $\mathsf X _{\mathbf{{h}},n}^{K}$ is a strong deformation retraction of $\mathsf X _{\mathbf{{h}},n}^{G}$ . In particular, $\mathsf X _{\mathbf{{h}},n}^{G}$ and $\mathsf X _{\mathbf{{h}},n}^{K}$ are homotopy equivalent. We also describe explicit examples relating $\mathsf X _{\mathbf{{h}},n}^{G}$ to relative character varieties.  相似文献   

7.
Let R be a commutative Noetherian ring, and let n be a non-negative integer. In this article, by using the theory of Gorenstein dimensions, it is shown that whenever R is a homomorphic image of a Noetherian Gorenstein ring, then the invariants ${\inf\{i \in \mathbb{N}_0|\, \rm{dim\, Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n\, \rm{for\, all}\, t \in \mathbb{N}_0\}}$ and ${\inf\{\lambda_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\, \mathfrak{p} \in {\rm Spec} \, R\, \rm{and\, dim}\, R/ \mathfrak{p} \geq n\}}$ are equal, for every finitely generated R-module M and for all ideals ${\mathfrak{a}, \mathfrak{b}}$ of R with ${\mathfrak{b}\subseteq \mathfrak{a}}$ . This generalizes Faltings’ Annihilator Theorem (see [6]).  相似文献   

8.
For a set G and a family of sets ${\mathcal{F}}$ let ${\mathcal{D}_{\mathcal{F}}(G)=\{F\in \mathcal{F}:F\cap G=\emptyset\}}$ and ${\mathcal{S}_{\mathcal{F}}(G)=\{F\in\mathcal{F}:F\subseteq G\,{\rm or} \,G \subseteq F\}.}$ We say that a family is l-almost intersecting, (≤ l)-almost intersecting, l-almost Sperner, (≤ l)-almost Sperner if ${|\mathcal{D}_{\mathcal{F}}(F)|=l, |\mathcal{D}_{\mathcal{F}}(F)|\le l, |\mathcal{S}_{\mathcal{F}}(F)|=l, |\mathcal{S}_{\mathcal{F}}(F)| \le l}$ (respectively) for all ${F \in \mathcal{F}.}$ We consider the problem of finding the largest possible family for each of the above properties. We also address the analogous generalization of cross-intersecting and cross-Sperner families.  相似文献   

9.
Monogenic (or hyperholomorphic) functions are well known in general Clifford algebras but have been little studied in the particular case ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 . We describe for this case the collection of all Appell systems: bases for the finite-dimensional spaces of monogenic homogeneous polynomials which respect the operator ${D = \partial_{0} - \vec{\partial}}$ D = ? 0 ? ? → . We prove that no purely algebraic recursive formula (in a specific sense) exists for these Appell systems, in contrast to the existence of known constructions for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{4}}$ R 3 → R 4 and ${\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}}$ R 4 → R 4 . However, we give a simple recursive procedure for constructing Appell bases for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 which uses the operation of integration of polynomials.  相似文献   

10.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

11.
For integral functionals initially defined for ${u \in {\rm W}^{1,1}(\Omega; \mathbb{R}^m)}$ by $$\int_{\Omega} f(\nabla u) \, {\rm d}x$$ we establish strict continuity and relaxation results in ${{\rm BV}(\Omega; \mathbb{R}^m)}$ . The results cover the case of signed continuous integrands ${f : \mathbb{R}^{m \times d} \to \mathbb{R}}$ of linear growth at infinity. In particular, it is not excluded that the integrands are unbounded below.  相似文献   

12.
13.
Let $\mathfrak{g }$ be a Lie algebra, $E$ a vector space containing $\mathfrak{g }$ as a subspace. The paper is devoted to the extending structures problem which asks for the classification of all Lie algebra structures on $E$ such that $\mathfrak{g }$ is a Lie subalgebra of $E$ . A general product, called the unified product, is introduced as a tool for our approach. Let $V$ be a complement of $\mathfrak{g }$ in $E$ : the unified product $\mathfrak{g } \,\natural \, V$ is associated to a system $(\triangleleft , \, \triangleright , \, f, \{-, \, -\})$ consisting of two actions $\triangleleft $ and $\triangleright $ , a generalized cocycle $f$ and a twisted Jacobi bracket $\{-, \, -\}$ on $V$ . There exists a Lie algebra structure $[-,-]$ on $E$ containing $\mathfrak{g }$ as a Lie subalgebra if and only if there exists an isomorphism of Lie algebras $(E, [-,-]) \cong \mathfrak{g } \,\natural \, V$ . All such Lie algebra structures on $E$ are classified by two cohomological type objects which are explicitly constructed. The first one $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ will classify all Lie algebra structures on $E$ up to an isomorphism that stabilizes $\mathfrak{g }$ while the second object $\mathcal{H }^{2} (V, \mathfrak{g })$ provides the classification from the view point of the extension problem. Several examples that compute both classifying objects $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ and $\mathcal{H }^{2} (V, \mathfrak{g })$ are worked out in detail in the case of flag extending structures.  相似文献   

14.
15.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

16.
We study deformations of Fourier–Mukai transforms in general complex analytic settings. Suppose X and Y are complex manifolds, and let P be a coherent sheaf on X ×  Y. Suppose that the Fourier–Mukai transform ${\Phi}$ Φ given by the kernel P is an equivalence between the coherent derived categories of X and of Y. Suppose also that we are given a formal *-quantization ${\mathbb{X}}$ X of X. Our main result is that ${\mathbb{X}}$ X gives rise to a unique formal *-quantization ${\mathbb{Y}}$ Y of Y. For the statement to hold, *-quantizations must be understood in the framework of stacks of algebroids. The quantization ${\mathbb{Y}}$ Y is uniquely determined by the condition that ${\Phi}$ Φ deforms to an equivalence between the derived categories of ${\mathbb{X}}$ X and ${\mathbb{Y}}$ Y . Equivalently, the condition is that P deforms to a coherent sheaf ${\tilde{P}}$ P ~ on the formal *-quantization ${\mathbb{X} \times\mathbb{Y}^{op}}$ X × Y o p of X × Y; here ${\mathbb{Y}^{op}}$ Y o p is the opposite of the quantization ${\mathbb{Y}}$ Y .  相似文献   

17.
We classify symmetric 2-structures ${(P, \mathfrak{G}_1, \mathfrak{G}_2, \mathfrak{K})}$ , i.e. chain structures which correspond to sharply 2-transitive permutation sets (E, Σ) satisfying the condition: “ ${(*) \, \, \forall \sigma, \tau \in \Sigma : \sigma \circ \tau^{-1} \circ \sigma \in \Sigma}$ ”. To every chain ${K \in \mathfrak{K}}$ one can associate a reflection ${\widetilde{K}}$ in K. Then (*) is equivalent to “ ${(**) \, \, \forall K \in \mathfrak{K} : \widetilde{K}(\mathfrak{K}) = \mathfrak{K}}$ ” and one can define an orthogonality “ ${\perp}$ ” for chains ${K, L \in \mathfrak{K}}$ by “ ${K \perp L \Leftrightarrow K \neq L \wedge \widetilde{K}(L) = L}$ ”. The classification is based on the cardinality of the set of chains which are orthogonal to a chain K and passing through a point p of K. For one of these classes (called point symmetric 2-structures) we proof that in each point there is a reflection and that the set of point reflections forms a regular involutory permutation set.  相似文献   

18.
We find a set of necessary and sufficient conditions under which the weight ${w: E \rightarrow \mathbb{R}^{+}}$ on the graph G = (V, E) can be extended to a pseudometric ${d : V \times V \rightarrow \mathbb{R}^{+}}$ . We describe the structure of graphs G for which the set ${\mathfrak{M}_{w}}$ of all such extensions contains a metric whenever w is strictly positive. Ordering ${\mathfrak{M}_{w}}$ by the pointwise order, we have found that the posets $({\mathfrak{M}_{w}, \leqslant)}$ contain the least elements ρ 0,w if and only if G is a complete k-partite graph with ${k \, \geqslant \, 2}$ . In this case the symmetric functions ${f : V \times V \rightarrow \mathbb{R}^{+}}$ , lying between ρ 0,w and the shortest-path pseudometric, belong to ${\mathfrak{M}_{w}}$ for every metrizable w if and only if the cardinality of all parts in the partition of V is at most two.  相似文献   

19.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

20.
Around 1958, Hill described how to draw the complete graph $K_n$ K n with $$\begin{aligned} Z(n) :=\frac{1}{4}\Big \lfloor \frac{n}{2}\Big \rfloor \Big \lfloor \frac{n-1}{2}\Big \rfloor \Big \lfloor \frac{n-2}{2}\Big \rfloor \Big \lfloor \frac{n-3}{2}\Big \rfloor \end{aligned}$$ Z ( n ) : = 1 4 ? n 2 ? ? n ? 1 2 ? ? n ? 2 2 ? ? n ? 3 2 ? crossings, and conjectured that the crossing number ${{\mathrm{cr}}}(K_{n})$ cr ( K n ) of $K_n$ K n is exactly $Z(n)$ Z ( n ) . This is also known as Guy’s conjecture as he later popularized it. Towards the end of the century, substantially different drawings of $K_{n}$ K n with $Z(n)$ Z ( n ) crossings were found. These drawings are 2-page book drawings, that is, drawings where all the vertices are on a line $\ell $ ? (the spine) and each edge is fully contained in one of the two half-planes (pages) defined by  $\ell $ ? . The 2-page crossing number of $K_{n} $ K n , denoted by $\nu _{2}(K_{n})$ ν 2 ( K n ) , is the minimum number of crossings determined by a 2-page book drawing of $K_{n}$ K n . Since ${{\mathrm{cr}}}(K_{n}) \le \nu _{2}(K_{n})$ cr ( K n ) ≤ ν 2 ( K n ) and $\nu _{2}(K_{n}) \le Z(n)$ ν 2 ( K n ) ≤ Z ( n ) , a natural step towards Hill’s Conjecture is the weaker conjecture $\nu _{2}(K_{n}) = Z(n)$ ν 2 ( K n ) = Z ( n ) , popularized by Vrt’o. In this paper we develop a new technique to investigate crossings in drawings of $K_{n}$ K n , and use it to prove that $\nu _{2}(K_{n}) = Z(n) $ ν 2 ( K n ) = Z ( n ) . To this end, we extend the inherent geometric definition of $k$ k -edges for finite sets of points in the plane to topological drawings of $K_{n}$ K n . We also introduce the concept of ${\le }{\le }k$ ≤ ≤ k -edges as a useful generalization of ${\le }k$ ≤ k -edges and extend a powerful theorem that expresses the number of crossings in a rectilinear drawing of $K_{n}$ K n in terms of its number of ${\le }k$ ≤ k -edges to the topological setting. Finally, we give a complete characterization of crossing minimal 2-page book drawings of $K_{n}$ K n and show that, up to equivalence, they are unique for $n$ n even, but that there exist an exponential number of non homeomorphic such drawings for $n$ n odd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号