首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study deformations of Fourier–Mukai transforms in general complex analytic settings. Suppose X and Y are complex manifolds, and let P be a coherent sheaf on X ×  Y. Suppose that the Fourier–Mukai transform ${\Phi}$ Φ given by the kernel P is an equivalence between the coherent derived categories of X and of Y. Suppose also that we are given a formal *-quantization ${\mathbb{X}}$ X of X. Our main result is that ${\mathbb{X}}$ X gives rise to a unique formal *-quantization ${\mathbb{Y}}$ Y of Y. For the statement to hold, *-quantizations must be understood in the framework of stacks of algebroids. The quantization ${\mathbb{Y}}$ Y is uniquely determined by the condition that ${\Phi}$ Φ deforms to an equivalence between the derived categories of ${\mathbb{X}}$ X and ${\mathbb{Y}}$ Y . Equivalently, the condition is that P deforms to a coherent sheaf ${\tilde{P}}$ P ~ on the formal *-quantization ${\mathbb{X} \times\mathbb{Y}^{op}}$ X × Y o p of X × Y; here ${\mathbb{Y}^{op}}$ Y o p is the opposite of the quantization ${\mathbb{Y}}$ Y .  相似文献   

2.
It is assumed that a Kripke–Joyal semantics ${\mathcal{A} = \left\langle \mathbb{C},{\rm Cov}, {\it F},\Vdash \right\rangle}$ A = C , Cov , F , ? has been defined for a first-order language ${\mathcal{L}}$ L . To transform ${\mathbb{C}}$ C into a Heyting algebra ${\overline{\mathbb{C}}}$ C ¯ on which the forcing relation is preserved, a standard construction is used to obtain a complete Heyting algebra made up of cribles of ${\mathbb{C}}$ C . A pretopology ${\overline{{\rm Cov}}}$ Cov ¯ is defined on ${\overline{\mathbb{C}}}$ C ¯ using the pretopology on ${\mathbb{C}}$ C . A sheaf ${\overline{{\it F}}}$ F ¯ is made up of sections of F that obey functoriality. A forcing relation ${\overline{\Vdash}}$ ? ¯ is defined and it is shown that ${\overline{\mathcal{A}} = \left\langle \overline{\mathbb{C}},\overline{\rm{Cov}},\overline{{\it F}}, \overline{\Vdash} \right\rangle }$ A ¯ = C ¯ , Cov ¯ , F ¯ , ? ¯ is a Kripke–Joyal semantics that faithfully preserves the notion of forcing of ${\mathcal{A}}$ A . That is to say, an object a of ${\mathbb{C}Ob}$ C O b forces a sentence with respect to ${\mathcal{A}}$ A if and only if the maximal a-crible forces it with respect to ${\overline{\mathcal{A}}}$ A ¯ . This reduces a Kripke–Joyal semantics defined over an arbitrary site to a Kripke–Joyal semantics defined over a site which is based on a complete Heyting algebra.  相似文献   

3.
Monogenic (or hyperholomorphic) functions are well known in general Clifford algebras but have been little studied in the particular case ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 . We describe for this case the collection of all Appell systems: bases for the finite-dimensional spaces of monogenic homogeneous polynomials which respect the operator ${D = \partial_{0} - \vec{\partial}}$ D = ? 0 ? ? → . We prove that no purely algebraic recursive formula (in a specific sense) exists for these Appell systems, in contrast to the existence of known constructions for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{4}}$ R 3 → R 4 and ${\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}}$ R 4 → R 4 . However, we give a simple recursive procedure for constructing Appell bases for ${\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}}$ R 3 → R 3 which uses the operation of integration of polynomials.  相似文献   

4.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

5.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

6.
7.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

8.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

9.
Let a trace be a computably enumerable set of natural numbers such that ${V^{[m]} = \{n : \langle n, m\rangle \in V \}}$ V [ m ] = { n : 〈 n , m 〉 ∈ V } is finite for all m, where ${\langle^{.},^{.}\rangle}$ 〈 . , . 〉 denotes an appropriate pairing function. After looking at some basic properties of traces like that there is no uniform enumeration of all traces, we prove varied results on traceability and variants thereof, where a function ${f : \mathbb{N} \rightarrow \mathbb{N}}$ f : N → N is traceable via a trace V if for all ${m, \langle f(m), m\rangle \in V.}$ m , 〈 f ( m ) , m 〉 ∈ V . Then we turn to lattices $$\textit{\textbf{L}}_{tr}(V) = (\{W : V \subseteq W \, {\rm and} \, W \, {\rm a} \, {\rm trace}\}, \, \subseteq),$$ L t r ( V ) = ( { W : V ? W and W a trace } , ? ) , V a trace. Here, we study the close relationship to ${\mathcal{E} = (\{A : A \subseteq \mathbb{N} \quad c.e.\}, \subseteq)}$ E = ( { A : A ? N c . e . } , ? ) , automorphisms, isomorphisms, and isomorphic embeddings.  相似文献   

10.
Let E be a vector bundle of rank r over an irreducible smooth projective curve X defined over the field ${\overline{{\mathbb F}}_p}$ F ¯ p . For fixed integers ${r_1\, , \ldots\, , r_\nu}$ r 1 , ... , r ν with ${1\, \leq\, r_1\, <\, \cdots\, <\, r_\nu\, <\, r}$ 1 ≤ r 1 < ? < r ν < r , let ${\text{Fl}(E)}$ Fl ( E ) be the corresponding flag bundle over X associated to E. Let ${\xi\, \longrightarrow \, {\rm Fl}(E)}$ ξ ? Fl ( E ) be a line bundle such that for every pair of the form ${(C\, ,\phi)}$ ( C , ? ) , where C is an irreducible smooth projective curve defined over ${\overline{\mathbb F}_p}$ F ¯ p and ${\phi\, :\, C\, \longrightarrow\, {\rm Fl}(E)}$ ? : C ? Fl ( E ) is a nonconstant morphism, the inequality ${{\rm degree}(\phi^* \xi)\, > \, 0}$ degree ( ? ? ξ ) > 0 holds. We prove that the line bundle ${\xi}$ ξ is ample.  相似文献   

11.
The Dodd–Jensen Covering Lemma states that “if there is no inner model with a measurable cardinal, then for any uncountable set of ordinals X, there is a ${Y\in K}$ such that ${X\subseteq Y}$ and |X| = |Y|”. Assuming ZF+AD alone, we establish the following analog: If there is no inner model with an ${\mathbb {R}}$ –complete measurable cardinal, then the real core model ${K(\mathbb {R})}$ is a “very good approximation” to the universe of sets V; that is, ${K(\mathbb {R})}$ and V have exactly the same sets of reals and for any set of ordinals X with ${|{X}|\ge\Theta}$ , there is a ${Y\in K(\mathbb {R})}$ such that ${X\subseteq Y}$ and |X| = |Y|. Here ${\mathbb {R}}$ is the set of reals and ${\Theta}$ is the supremum of the ordinals which are the surjective image of ${\mathbb {R}}$ .  相似文献   

12.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

13.
14.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

15.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

16.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

17.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

18.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

19.
Let M be a shift invariant subspace in the vector-valued Hardy space ${H_{E}^{2}(\mathbb{D})}$ H E 2 ( D ) . The Beurling–Lax–Halmos theorem says that M can be completely characterized by ${\mathcal{B}(E)}$ B ( E ) -valued inner function ${\Theta}$ Θ . When ${E = H^{2}(\mathbb{D}),\,H_{E}^{2}(\mathbb{D})}$ E = H 2 ( D ) , H E 2 ( D ) is the Hardy space on the bidisk ${H^{2}(\mathbb{D}^2)}$ H 2 ( D 2 ) . Recently, Qin and Yang (Proc Am Math Soc, 2013) determines the operator valued inner function ${\Theta(z)}$ Θ ( z ) for two well-known invariant subspaces in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . This paper generalizes the ${\Theta(z)}$ Θ ( z ) by Qin and Yang (Proc Am Math Soc, 2013) and deal with the structure of ${M = {\Theta}(z)H^{2}(\mathbb{D}^{2})}$ M = Θ ( z ) H 2 ( D 2 ) when M is an invariant subspace in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . Unitary equivalence, spectrum of the compression operator and core operator are studied in this paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号