首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
《Liquid crystals》1997,23(2):275-283
The complex dielectric permittivity has been measured for a ferroelectric liquid crystal in the range 102-109Hz. Six different relaxations have been obtained and characterized: soft mode (SmA* and SmC* phases), Goldstone mode (SmC* phase), rotation around molecular long axis, rotation around molecular short axis, ferroelectric domain mode (SmC* phase) and an internal motion associated with a polar group. Strengths and frequencies of these modes have been obtained for the different phases for different bias fields. Using these results together with spontaneous polarization and molecular tilt measurements we have also obtained the rotational viscosities associated with the soft mode and the Goldstone mode. We explain the results in the light of the so-called Landau extended model, concluding that the biquadratic coupling between polarization and tilt is quite important with regard to the bilinear coupling. This fact has been used to explain the noticeable increase of the activation energy of the frequency of the mode related to the rotation around the molecular long axis at the SmA*-SmC* phase transition.  相似文献   

2.
乙酰基二茂铁呋喃甲酰腙与β-环糊精包结物的结构与特性   总被引:3,自引:0,他引:3  
用饱和溶液法制备了二茂铁酰腙类化合物乙酰基二茂铁呋喃甲酰腙 (AFH)与β-环糊精的包结物 .元素分析及溶解常数测定结果证明两者形成了 1∶ 1包结物 .从溶解度曲线计算得出包合常数为2 2 7.3 L·mol-1.通过 UV,FTIR,X射线粉末衍射研究了包结特性 ,并用 NMR技术推断了包结物的结构  相似文献   

3.
A stopped-flow study of the Cp*MoO3- protonation at low pH (down to zero) in a mixed H2O-MeOH (80:20) solvent at 25 degrees C allows the simultaneous determination of the first acid dissociation constant of the oxo-dihydroxo complex, [Cp*MoO(OH)2]+ (pKa1 = -0.56), and the rate constant of its isomerization to the more stable dioxo-aqua complex, [Cp*MoO2(H2O)]+ (k-2 = 28 s-1). Variable-temperature (5-25 degrees C) and variable-pressure (10-130 MPa) kinetics studies have yielded the activation parameters for the combined protonation/isomerization process (k-2/Ka1) from Cp*MoO2(OH) to [Cp*MoO2(H2O)]+, viz., DeltaH++= 5.1 +/- 0.1 kcal mol-1, DeltaS++ = -37 +/- 1 cal mol-1 K-1, and DeltaV++ = -9.1 +/- 0.2 cm3 mol-1. Computational analysis of the two isomers, as well as the [Cp*MoO2]+ complex resulting from the dissociation of water, reveals a crucial solvent effect on both the isomerization and the water dissociation energetics. Introducing a solvent model by the conductor-like polarizable continuum model and especially by explicitly inclusion of up to three water molecules in the calculations led to the stabilization of the dioxo-aqua species relative to the oxo-dihydroxo isomer and to the substantial decrease of the energy cost for the water dissociation process. The presence of a water dissociation equilibrium is invoked to account for the unusually low effective acidity (pKa1' = 4.19) of the [Cp*MoO2(H2O)]+ ion. In addition, the computational study reveals the positive role of external water molecules as simultaneous proton donors and acceptors, having the effect of dramatically lowering the isomerization energy barrier.  相似文献   

4.
《Liquid crystals》1999,26(9):1415-1419
The so-called chiral smectic C-beta (SmC*beta) phase has been reported as distinct from the SmC* phase in several materials that exhibit antiferroelectric liquid crystal mesophases and subphases. The SmC*beta phase is known to be chiral, tilted and to exhibit ferrielectric switching, but no structure had been suggested which explains these effects. This paper presents a possible structure for the SmC*beta phase which can explain the ferrielectric properties. The model is proposed on the basis of complementary optical, electric and X-ray diffraction studies of a chiral liquid crystal. The layer spacing, optical and steric tilt and spontaneous polarization over the temperature range of the SmC*beta phase are described. The complementary experimental techniques used reveal the occurrence of inversion phenomena, on which this model is based.  相似文献   

5.
We report the first observation and analysis of rotational band contours of the jet-cooled DNA base adenine for three vibronic bands at 36,062, 36,105, and 36,248 cm(-1). The lowest npi* and pipi* states have been labeled with their excited-state vibronic symmetry, and a strong pipi*-npi* vibronic coupling via an out-of-plane vibrational mode has been revealed. The rotational band contours have been recorded by resonant two-photon ionization (R2PI) and analyzed by a genetic algorithm (GA) based fit to obtain the optimum band parameters. The vibronic band at 36,062 cm(-1) shows dominant c-type character with transition dipole moment (TDM) components mu(a)2:mu(b)2:mu(c)2 = 0.09:0.17:0.74 and those at 36 105 and 36 248 cm(-1) show abc-hybrid character with predominantly in-plane TDM components. The band at 36,062 cm(-1) has been assigned as the n --> pi* transition, and the 36,105 cm(-1) band as the pi --> pi* transition by the symmetry analysis. The band at 36,248 cm(-1) provides evidence of the strong pipi*-npi* vibronic coupling via an out-of-plane vibrational mode.  相似文献   

6.
M. Conradi 《Liquid crystals》2013,40(9):1215-1220
This paper reports on optical trapping of micrometre-sized isotropic inclusions in free-standing smectic A* films. Droplet manipulation and trapping potential in such a two-dimensional anisotropic system show that optical trapping has two distinct regimes with unique separation dependence, governed by long-range and short-range trapping forces and enhanced diffusivity at the free surfaces. Molecular ordering in the surface layers of isotropic inclusions, at the liquid crystal–air interface, in addition leads to a new field of light-controlled particle dynamics. For low laser powers, translational motion of a droplet along the laser polarisation is observed. Above the threshold laser power, the transfer of optical angular momentum to the inclusion via linearly polarised light leads to circular-like motion. As the optical torque for a given intensity is counterbalanced by the elastic torque of the smectic film, this motion results in finite angle steps.  相似文献   

7.
The phototautomerization mechanism of a model nitro enamine (NEA) chromophore (incorporated in the structure of a highly photolabile pesticide, tetrahydro-2-(nitromethylene)-2H-1,3-thiazine) has been studied using complete active space self-consistent field reaction path computations. The optically accessible 1pipi* excited state of NEA involves separation of charge and correlates diabatically with the ground state of the tautomerized acinitro imine (ANI) form. For optimum photostabilization, the 1pipi* state of NEA should be S1: in this case, the tautomer would be efficiently formed via a diabatic intramolecular proton-transfer pathway passing through an S1/S0 conical intersection, followed by a facile thermal back proton-transfer reaction. However, in NEA itself the lowest excited states correspond to nitro group 1npi* states, and there are additional surface crossings that provide a mechanism for populating the 1npi* manifold. The above results indicate that the high photolability observed for the pesticide [Kleier, D.; Holden, I.; Casida, J. E.; Ruzo, L. O. J. Agric. Food Chem. 1985, 33, 998-1000] has to be ascribed to photochemistry originating on the 1npi* manifold of states, populated indirectly from the 1pipi* state.  相似文献   

8.
The present contribution reports experimental and computational investigations of the interaction between [Cp*Fe(dppe)H] and different proton donors (HA). The focus is on the structure of the proton transfer intermediates and on the potential energy surface of the proton transfer leading to the dihydrogen complex [Cp*Fe(dppe)(H2)]+. With p-nitrophenol (PNP) a UV/Visible study provides evidence of the formation of the ion-pair stabilized by a hydrogen bond between the nonclassical cation [Cp*Fe(dppe)(H2)]+ and the homoconjugated anion ([AHA]-). With trifluoroacetic acid (TFA), the hydrogen-bonded ion pair containing the simple conjugate base (A-) in equilibrium with the free ions is observed by IR spectroscopy when using a deficit of the proton donor. An excess leads to the formation of the homoconjugated anion. The interaction with hexafluoroisopropanol (HFIP) was investigated quantitatively by IR spectroscopy and by 1H and 31P NMR spectroscopy at low temperatures (200-260 K) and by stopped-flow kinetics at about room temperature (288-308 K). The hydrogen bond formation to give [Cp*Fe(dppe)H]HA is characterized by DeltaH degrees =-6.5+/-0.4 kcal mol(-1) and DeltaS degrees = -18.6+/-1.7 cal mol(-1) K(-1). The activation barrier for the proton transfer step, which occurs only upon intervention of a second HFIP molecule, is DeltaH(not equal) = 2.6+/-0.3 kcal mol(-1) and DeltaS(not equal) = -44.5+/-1.1 cal mol(-1) K(-1). The computational investigation (at the DFT/B3 LYP level with inclusion of solvent effects by the polarizable continuum model) reproduces all the qualitative findings, provided the correct number of proton donor molecules are used in the model. The proton transfer process is, however, computed to be less exothermic than observed in the experiment.  相似文献   

9.
Herein we report doping of ZnSe by Cr ions leads to formation of small ZnCr(2)Se(4) spinel inclusions within the cubic sphalerite lattice of a 2.8 nm CrZnSe quantum dot (QD). The Cr ion incorporates as a pair of Cr(III) ions occupying edge-sharing tetragonal distorted octahedral sites generated by formation of three Zn ion vacancies in the sphalerite lattice in order to charge compensate the QD. The site is analogous to the formation of a subunit of the ZnCr(2)Se(4) spinel phase known to form as inclusions during peritectoid crystal growth in the ternary CrZnSe solid-state compound. The oxidation state and site symmetry of the Cr ion is confirmed by X-ray absorption near edge spectroscopy (XANES), crystal field absorption spectroscopy, and electron paramagnetic resonance (EPR). Incorporation as the Cr(III) oxidation state is consistent with the thermodynamic preference for Cr to occupy an octahedral site within a II-VI semiconductor lattice with a half-filled t(2g) d-level. The measured crystal field splitting energy for the CrZnSe QD is 2.08 eV (2.07 eV form XANES), consistent with a spinel inclusion. Further evidence of a spinel inclusion is provided by analysis of the magnetic data, where antiferromagnetic (AFM) exchange, a Curie-Weiss (C-W) temperature of θ = -125 K, and a nearest-neighbor exchange coupling constant of J(NN) = -12.5 K are observed. The formation of stable spinel inclusions in a QD has not been previously reported.  相似文献   

10.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

11.
The molecular structures of the chiral compounds 1-phenylethanol, 2-hexanol and 1-phenylethanol acetate have been studied theoretically by ab initio methods. Conformational analysis and electronic structure studies have been carried out with these molecules at STO-3G* and 6-31G* basis sets. For the study of the interaction of lipases with substrates, a simplified model of the tetrahedral intermediate has been calculated at the 6-31G*//4-31G* level. Molecular mechanics simulations of the interaction of these compounds with the lipases of Candida rugosa, Pseudomonas cepacia and Rhizomucor miehei have been used to study the enantioselectivity of these lipases in the transesterification reaction of the chiral alcohols. The theoretical results have been compared with experimental data and good agreement was observed. It can be concluded that the enantioselectivity of these lipases is controlled by the formation of a tetrahedral intermediate, whereas Michaelis complex formation has a much lower significance.  相似文献   

12.
HOCl…HCOCl复合物的结构和电子性质   总被引:1,自引:0,他引:1  
在DFT-B3LYP/6-311++G**水平上求得HOCl+HCOCl复合物势能面上的四种稳定构型(S1,S2,S3和S4).其中,在复合物S1和S3中,HOCl单体的5H原子作为质子供体,与HCOCl单体中作为质子受体的10原子相互作用,形成红移氢键复合物;在复合物S4中,HOCl单体的7Cl原子作为质子供体,与HCOCl单体中作为质子受体的IO原子相互作用,形成红移卤键复合物;而在复合物S2中,同时存在2C-3H…6O蓝移氢键和4Cl…5O相互作用.在MP2/6-311++G**水平上计算的单体间的相互作用能考虑了基组重叠误差(BSSE)和零点振动能(ZPVE)校正,其值在-5.05与-14.76 kJ·mol-1之间.采用自然键轨道理论(NBO)对两种单体间相互作用的本质进行了考查,并通过分子中原子理论(AIM)分析了复合物中氢键和卤键键鞍点处的电子密度拓扑性质.  相似文献   

13.
The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.  相似文献   

14.
The mechanism for the 1,3-dipolar cycloaddition of benzonitrile oxide toward ethynyl and propynylboronate has been studied by using density functional theory (DFT) at B3LYP/6-31G* level. These cycloadditions are concerted [3+2] processes. The presence of the two oxygens on the boronic ester precludes the participation of the boron atom on [3+3] processes. The two regioisomeric channels associated to the formation of the isoxazoles bearing the boronic ester unit on the 4- or 5-positions have been characterized. The B3LYP/6-31G* activation parameters are in acceptable agreement with the experiments, allowing to explain the factors controlling these regioselective cycloadditions.  相似文献   

15.
Spectroscopic investigation supported by molecular modeling methods has been used to describe the inclusion complex of β-cyclodextrin (β-CD) with 1-Methyl-1-({2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-4-yl}methyl) piperidinium chloride (1MPTMPC) in solution and in solid state. The formation of inclusion complex between the β-CD and the 1MPTMPC has been investigated both in solution and in the solid state. Solution-state complexation between the 1MPTMPC and β-CD was established using 1H NMR spectroscopy and isothermal titration calorimetry (ITC). From the 1H NMR spectroscopic studies, 1:1 complex stoichiometry was deduced with an association constant (K) of 925 M?1. Using an independent binding model, the ITC technique provides a K value of the same order with the one determined by NMR and the thermodynamic parameters ΔH, ΔS and ΔG which reveals driving forces involved during complex formation. The formation of the solid inclusion compound was confirmed by X-ray powder diffraction and differential scanning calorimetry. The most probable conformation of the inclusion complex obtained through a molecular docking investigation corroborates well to ROESY experiment.  相似文献   

16.
The structures and relative stabilities of furoxan and some of its isomers, e.g., the 1,2-dinitrosoethylenes, have been determined by means of ab initio Hartee–Fock and Møller–Plesset calculations. Geometries were optimized at the HF/3-21G, HF/6-31G* and MP2/6-31G* levels, and subsequently used for computing MP2/6-31G*, MP3/6-31G*, and MP4/6-31G* energies. The results are markedly affected by the inclusion of electronic correlation, which renders three of the isomers unstable. It also emphasizes the importance of a zwitterionic contribution to the structure of furoxan, which promotes ring-opening through a cis 1,2-dinitrosoethylene intermediate/transition state that has an MP4/6-31G*//MP2/6-31G* energy that is 31.6 kcal/mol above furoxan.  相似文献   

17.
Due to the poor water solubility of andrographolide (andro), an inclusion technique has been developed to modify its physical and chemical properties so as to improve its bioavailability. In contrast with the immense experimental studies on the inclusion complexes of andro:cyclodextrin, no computational study has so far been carried out on this system. In this work, preliminary docking experiments with AutoDock were performed. Density Functional Theory (DFT) and Austin Model 1 (AM1) calculations upon the docking instances were applied to investigate the two possible modes of molecular inclusions between andro and x-cyclodextrin (xCD, where x is alpha, beta or gamma). Atoms-in-Molecules (AIM) analysis based on the B3LYP/cc-pVDZ wavefunction was applied to verify the existence of the intermolecular hydrogen bonds. It was found that the most stable complex among the six possible inclusion complexes was the one formed between andro and betaCD with andro's decalin ring moiety wrapped by CD at a ratio of 1:1. The hydrogen bonds between andro and CD were responsible for the stability of the inclusion complexes. The calculated data were found to be consistent with the experimental results. Thus, the results of this study can aid new drug design processes.  相似文献   

18.
From the precipitation borderline in the pM'-pC(H) diagram, determined experimentally under CO(2)-free conditions, the stability constants of the mononuclear species of ytterbium hydroxide have been established. The values found are log *beta(1) = -7.7, log *beta(2) = -15.5, log *beta(3) = -23.2, log *beta(4) = -37.5, log *beta(5) = -51.9, log *beta(6) = -66.2 and log *K(S0) = 18.0. The data refer to fresh precipitates, prepared at room temperature (21.5 +/- 0.2 degrees ) in sodium perchlorate medium with an ionic strength of 1. The formation of polynuclear hydroxide complexes has been considered and rejected as unlikely to occur.  相似文献   

19.
The reaction of the H* atom with O2, giving the hydroperoxyl HO2* radical, has been investigated in pressurized water up to 350 degrees C using pulse radiolysis and deep-UV transient absorption spectroscopy. The reaction rate behavior is highly non-Arrhenius, with near diffusion-limited behavior at room temperature, increasing to a near constant limiting value of approximately 5 x 10(10) M(-1) s(-1) above 250 degrees C. The high-temperature rate constant is in near-perfect agreement with experimental extrapolations and ab initio calculations of the gas-phase high-pressure limiting rate. As part of the study, reaction of the OH* radical with H2 has been reevaluated at 350 degrees C, giving a rate constant of (6.0 +/- 0.5) x 10(8) M(-1) s(-1). The mechanism of the H* atom reaction with the HO2* radical is also investigated and discussed.  相似文献   

20.
The natural atomic orbital/point (NAO-PC) model originally developed to calculate molecular electrostatic potentials (MEPs) and multiple moments based on the AM1 wave function has been extended to PM3. As for AM1, NAO-PC/PM3 reproduces dipole moments calculated by the standard PM3 method very well. There is also a surprisingly good correlation between experimental and calculated quadrupole moments. The MEPs calculated using PM3/NAO-PC are found to be in better agreement with those given by RHF/6-31G* than those obtained from the PM3 wave function using Coulson charges. On the other hand, the NAO-PC model is often slightly worse then the method implemented in MOPAC-ESP. The MEPs calculated using our model based on the PM3 wave function are often in better agreement with those given by RHF/6-31G* than those obtain with AM1. © 1994 by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号