首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications.  相似文献   

2.
A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers.  相似文献   

3.

The adhesion failure has become one dominant factor in determining the reliability and service life of miniaturized devices subject to loadings with arbitrary orientations. This article establishes an adhesive full stick contact model between an elastic half-space and a rigid cylinder loaded in any direction. Using the Papkovich-Neuber functions, the Fourier integral transform, and the asymmetric bipolar coordinates, the exact solution is obtained. Unlike the Johnson-Kendall-Roberts (JKR) model, the present adhesive contact model takes into account the effects of the load direction as well as the coupling of the normal and tangential contact stresses. Besides, it considers the full stick contact which has large values of the friction coefficient between contacting surfaces, contrary to the frictionless contact supposed in the JKR model. The result shows that suitable angles can be found, which makes the contact surfaces difficult to be peeled off or easy to be pressed into.

  相似文献   

4.
We derive solutions of the Kirchhoff equations for a knot tied on an infinitely long elastic rod subjected to combined tension and twist, and held at both endpoints at infinity. We consider the case of simple (trefoil) and double (cinquefoil) knots; other knot topologies can be investigated similarly. The rod model is based on Hookean elasticity but is geometrically nonlinear. The problem is formulated as a nonlinear self-contact problem with unknown contact regions. It is solved by means of matched asymptotic expansions in the limit of a loose knot. We obtain a family of equilibrium solutions depending on a single loading parameter (proportional to applied twisting moment divided by square root of pulling force), which are asymptotically valid in the limit of a loose knot, ε→0. Without any a priori assumption, we derive the topology of the contact set, which consists of an interval of contact flanked by two isolated points of contacts. We study the influence of the applied twist on the equilibrium.  相似文献   

5.
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.  相似文献   

6.
The present paper proposes a simplified model for calculating hydrodynamic lubrication film thickness in elastoplastic line contacts. According to the Saint-Venant’s principle, the pressure in the contact is taken as uniformly distributed, this gives the contact surface elastic deformations in the inlet zone far away from the contact center close to real ones while gives those close to the contact center greater than real ones. This treatment is validated for hydrodynamic lubricated elastic contacts for relatively light loads and high rolling speeds. It gives the film thickness at the contact center a little higher than that calculated based on the real elastic model. The treatment is extended to a hydrodynamic lubricated elastoplastic line contact. The contact surfaces in the inlet zone are assumed as elastic and their deformations are calculated based on the uniform pressure distribution in the elastoplastic contact area. An inlet zone analysis is taken for obtaining the calculating equation of the hydrodynamic film thickness at the contact center. The equation overestimates the central film thickness but gives a satisfactory film thickness prediction for the heavy load which gives significant plastic deformations in the elastoplastic contact. It is found that when the load is lighter than 0.6 w pc , the contact can be taken as elastic when calculating the central film thickness, while when the load is heavier than 0.6 w pc , the contact can be taken as fully plastic; Here w pc is the critical load for the contact fully plastic deformation. The plastic deformation in an elastoplastic line contact is found to reduce the hydrodynamic lubrication film thickness in the contact. This reduction is greater for higher rolling speeds and heavier loads. However, it is significantly dropped with increasing surface hardness.  相似文献   

7.
This paper is concerned with investigation of the effects of strain-stiffening on the response of solid circular cylinders in the combined deformation of torsion superimposed on axial extension. The cylinders are composed of incompressible isotropic nonlinearly elastic materials. Our primary focus is on materials that undergo severe strain-stiffening in the stress-stretch response. In particular, we consider two particular phenomenological constitutive models for such materials that reflect limiting chain extensibility at the molecular level. The axial stretch γ and twist that can be sustained in cylinders composed of such materials are shown to be constrained in a coupled fashion. It is shown that, in the absence of an additional axial force, a transition value γ=γ t of the axial stretch exists such that for γ<γ t , the stretched cylinder tends to elongate on twisting whereas for γ>γ t , the stretched cylinder tends to shorten on twisting. These results are in sharp contrast with those for classical models such as the Mooney-Rivlin (and neo-Hookean) models that predict that the stretched circular cylinder always tends to further elongate on twisting. We also obtain results for materials modeled by the well-known exponential strain-energy widely used in biomechanics applications. This model reflects a strain-stiffening that is less abrupt than that for the limiting chain extensibility models. Surprisingly, it turns out that the results in this case are somewhat more complicated. For a fixed stiffening parameter, provided that the stretch is sufficiently small, the stretched bar always tends to elongate on twisting in the absence of an additional axial force. However, for sufficiently large stretch, the cylinder tends to shorten on undergoing sufficiently small twist but then tends to elongate on further twisting. These results are of interest in view of the widespread use of exponential models in the context of the mechanics of soft biological tissues. The special case of pure torsion is also briefly considered. In this case, the resultant axial force required to maintain pure torsion is compressive for all the models discussed here. In the absence of such a force, the bar would elongate on twisting reflecting the celebrated Poynting effect.   相似文献   

8.
Drag Reduction of a Circular Cylinder Using an Upstream Rod   总被引:3,自引:0,他引:3  
Experimental studies on the drag reduction of the circular cylinder were conducted by pressure measurement at a Reynolds number of 82 000 (based on the cylinder diameter). A rod was placed upstream of and parallel to the cylinder to control the flow around the cylinder. The upstream rod can reduce the resultant force of the cylinder at various spacing between the rod and the cylinder for α < 5(α defined as the staggered angle of the rod and the cylinder). For α > 10, the resultant force coefficient has a large value, so the upstream rod cannot reduce the force on the cylinder any more. For α = 0 and d/D = 0.5 (where d and D are the diameter of the rod and the cylinder, respectively), the maximum drag of the cylinder reduces to 2.34% that of the single cylinder. The mechanism of the drag reduction of the cylinder with an upstream rod in tandem was presented by estimating the local contributions to the drag reduction of the pressure variation. In the staggered arrangement, the flow structures have five flow patterns (they are the cavity mode, the wake splitting mode, the wake merge mode, the weak boundary layer interaction mode and the negligible interaction mode) according to the pressure distribution and the hydrogen bubble flow visualization. The half plane upwind of the cylinder can be divided to four regions, from which one can easily estimates the force acting on the circular cylinder with an upstream rod in staggered arrangement.  相似文献   

9.
A linear stability analysis determining the critical Rayleigh number R c for onset of convection in a bounded vertical cylinder containing a fluid-saturated porous medium is performed for insulated sidewalls, isothermal top surface, and bottom surface heated by forced convection. This Newtonian heating of the bottom surface involves a Biot number Bi that allows consideration of the continuum of boundary conditions ranging from constant heat flux, with global minimum R min=27.096 found as Bi→0, to isothermal, with global minimum R min=4π2 found as Bi→ ∞. In both cases and for most cylinder aspect ratios, incipient convection sets in as an asymmetric mode, though islands of aspect ratio exist where the onset mode is symmetric. Sample three-dimensional renderings of disturbance temperature distributions showing preferred modes at onset of convection for fixed Bi are provided and an analytical fit to R min as a function of Bi is given.  相似文献   

10.
We study flow and heat transfer to a cylinder in cross flow at Re = 3,900–80,000 by means of three-dimensional transient RANS (T-RANS) simulations, employing an RNG k − ε turbulence model. Both the case of a bare solid cylinder and that of a solid cylinder surrounded at some fixed distance by a thin porous layer have been studied. The latter configuration is a standard test geometry for measuring the insulating and protective performance of garments. In this geometry, the flow in the space between the solid cylinder and the porous layer is laminar but periodic, whereas the outer flow is transitional and characterized by vortex shedding in the wake of the cylinder. The results from the T-RANS simulations are validated against data from Direct Numerical Simulations and experiments. It is found that T-RANS is very well suited for simulating this type of flow. The transient nature of the flow underneath the porous layer is well reproduced, as well as the influence of vortex shedding on the heat transfer in the downstream stagnation zone. T-RANS results are found to be in much better agreement with DNS and experimental data than results from steady-state RANS.  相似文献   

11.
We report on velocity fluctuations and the fluctuation-driven radial transport of angular momentum in turbulent circular Couette flow. Our apparatus is short (cylinder height to gap width ratio Γ ~ 2) and of relatively high wall curvature (ratio of cylinder radii η ~ 0.35). Fluctuation levels and the mean specific angular momentum are found to be roughly constant over radius, in accordance with previous studies featuring narrower gaps. Synchronized dual beam Laser Doppler Velocimetry (2D LDV) is used to directly measure the r − θ Reynolds stress component as a function of Reynolds number (Re), revealing approximate scalings in the non-dimensional angular momentum transport that confirm previous measurements of torque in similar flows. 2D LDV further allows for a decomposition of the turbulent transport to assess the relative roles of fluctuation intensity and r − θ cross-correlation. We find that the increasing angular momentum transport with Re is due to intensifying absolute fluctuation levels accompanied by a slightly weakening cross-correlation.  相似文献   

12.
This paper derives a new three-dimensional (3-D) analytical solution for the indirect tensile tests standardized by ISRM (International Society for Rock Mechanics) for testing rocks, and by ASTM (American Society for Testing and Materials) for testing concretes. The present solution for solid circular cylinders of finite length can be considered as a 3-D counterpart of the classical two dimensional (2-D) solutions by Hertz in 1883 and by Hondros in 1959. The contacts between the two steel diametral loading platens and the curved surfaces of a cylindrical specimen of length H and diameter D are modeled as circular-to-circular Hertz contact and straight-to-circular Hertz contact for ISRM and ASTM standards respectively. The equilibrium equations of the linear elastic circular cylinder of finite length are first uncoupled by using displacement functions, which are then expressed in infinite series of some combinations of Bessel functions, hyperbolic functions, and trigonometric functions. The applied tractions are expanded in Fourier–Bessel series and boundary conditions are used to yield a system of simultaneous equations. For typical rock cylinders of 54 mm diameter subjected to ISRM indirect tensile tests, the contact width is in the order of 2 mm (or a contact angle of 4°) whereas for typical asphalt cylinders of 101.6 mm diameter subjected to ASTM indirect tensile tests the contact width is about 10 mm (or a contact angle of 12°). For such contact conditions, 50 terms in both Fourier and Fourier–Bessel series expansions are found sufficient in yielding converged solutions. The maximum hoop stress is always observed within the central portion on a circular section close to the flat end surfaces. The difference in the maximum hoop stress between the 2-D Hondros solution and the present 3-D solution increases with the aspect ratio H/D as well as Poisson’s ratio ν. When contact friction is neglected, the effect of loading platen stiffness on tensile stress in cylinders is found negligible. For the aspect ratio of H/D = 0.5 recommended by ISRM and ASTM, the error in tensile strength may be up to 15% for both typical rocks and asphalts, whereas for longer cylinders with H/D up to 2 the error ranges from 15% for highly compressible materials, and to 60% for nearly incompressible materials. The difference in compressive radial stress between the 2-D Hertz solution or 2-D Hondros solution and the present 3-D solution also increases with Poisson’s ratio and aspect ratio H/D. In summary, the 2-D solution, in general, underestimates the maximum tensile stress and cannot predict the location of the maximum hoop stress which typically locates close to the end surfaces of the cylinder.  相似文献   

13.
Flow development in the wake of a dual step cylinder has been investigated experimentally using Laser Doppler Velocimetry and flow visualization. The dual step cylinder model is comprised of a large diameter cylinder (D) mounted at the mid-span of a small diameter cylinder (d). The experiments have been performed for a Reynolds number (Re D ) of 1,050, a diameter ratio (D/d) of 2, and a range of large cylinder aspect ratios (L/D). The results show that the flow development is highly dependent on L/D. The following four distinct flow regimes can be identified based on vortex dynamics in the wake of the large cylinder: (1) for L/D ≥ 15, three vortex shedding cells form in the wake of the large cylinder, one central cell bounded by two cells of lower frequency, (2) for 8 < L/D ≤ 14, a single vortex shedding cell forms in the wake of the large cylinder, (3) for 2 < L/D ≤ 6, vortex shedding from the large cylinder is highly three-dimensional. When spanwise vortices are shed, they deform substantially and attain a hairpin shape in the near wake, (4) for 0.2 ≤ L/D ≤ 1, the large cylinder induces vortex dislocations between small cylinder vortices. The results show that for Regimes I to III, on the average, the frequency of vortex shedding in the large cylinder wake decreases with L/D, which is accompanied by a decrease in coherence of the shed vortices. In Regime IV, small cylinder vortices connect across the large cylinder wake, but these connections are interrupted by vortex dislocations. With decreasing L/D, the frequency of dislocations decreases and the dominant frequency in the large cylinder wake increases toward the small cylinder shedding frequency.  相似文献   

14.
Summary This paper deals with the contact problem of a rigid cylinder pressed on an elastic layer connected rigidly to a rigid base. It is assumed that there is no friction between cylinder and layer and that the cylinder is long enough to ensure a plane deformation. Asymptotic solutions are presented when the ratio of the half width c of the contact area to the thickness b of the layer is small and also when c/b is large. The breakdown of the asymptotic solution for large values of c/b when the material is incompressible, discussed by Koiter [6], is overcome by considering a more general solution of the Wiener-Hopf integral equation encountered. The results of both asymptotic solutions match so well that a satisfactory solution is obtained for all values c/b and for 00.5.  相似文献   

15.
Steady mixed convection boundary layer flow from an isothermal horizontal circular cylinder embedded in a porous medium filled with a nanofluid has been studied for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme. The solutions for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction φ and the mixed convection parameter λ. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that for each particular nanoparticle, as the nanoparticle volume fraction φ increases, the magnitude of the skin friction coefficient decreases, and this leads to an increase in the value of the mixed convection parameter λ which first produces no separation. On the other hand, it is also found that of all the three types of nanoparticles considered, for any fixed values of φ and λ, the nanoparticle Cu gives the largest values of the skin friction coefficient followed by TiO2 and Al2O3. Finally, it is worth mentioning that heating the cylinder (λ > 0) delays separation of the boundary layer and if the cylinder is hot enough (large values of λ > 0), then it is suppressed completely. On the other hand, cooling the cylinder (λ < 0) brings the boundary layer separation point nearer to the lower stagnation point and for a sufficiently cold cylinder (large values of λ < 0) there will not be a boundary layer on the cylinder.  相似文献   

16.
Flow-induced vibration of an elastic airfoil due to the wake propagating from an upstream cylinder at a Reynolds number of 10 000 based on cylinder diameter D was investigated. A laser vibrometer was employed to measure the bending and torsional vibration displacements at the mid-span of the airfoil and the cylinder. The dimensionless gap size S/D between the two structures was selected as the governing parameter of the flow-induced vibration problem. It is found that the vibration amplitudes of the elastic airfoil and the vortex shedding frequency of the coupled cylinder–airfoil system are strongly dependent on S/D, due to the different fluid–structure interaction experienced by the airfoil at various S/D. Strong vortex-induced vibration of the airfoil appears to be excited by the organized Karman-vortex-street (KVS) vortices in the cylinder wake for S/D>3 and becomes stabilized for S/D3. However, as a result of the shear-layer-induced vibration at an appropriate frequency, structural resonance is also found to occur even though the airfoil is located in the stabilizing range. The occurrence of structural resonance is further supported by a complementary experiment where the slender structure is an elastic flat plate. This phenomenon indicates that assuming the structures in any fluid–structure interaction problem to be rigid is not appropriate, even though they might appear to be highly stiff. The experimental results were used to validate a numerical model previously developed to estimate the structural responses in complicated fluid–structure interaction problems.  相似文献   

17.
This study reveals the interaction patterns of separated shear layers from a circular cylinder with a short downstream plate and their reflection on the frequency and the formation length of the vortices from the cylinder as a function of plate location relative to the cylinder. The effect of horizontal (G/D) and vertical (Z/D) distances between the cylinder and the plate on the near wake is studied via Digital Particle Image Velocimetry (DPIV) in a water channel for Reynolds numbers of 200, 400 and 750, based on the cylinder diameter D. It is shown that the interaction of wake with the plate of length D can be categorized depending on the horizontal and the vertical distances between the cylinder and the plate. For the vertical distance range of Z/D ≤ 0.7, there is a critical horizontal spacing before which the shear layers from the cylinder are inhibited to form vortices in front of the plate. Resulting elongated recirculation region between the plate and the cylinder suggests modification of the absolutely unstable near wake of free circular cylinder in favor of convective instability. Z/D = 0.9 provides a passage from Z/D ≤ 0.7 to ≥1.1 and is associated with a dominant effect on the near-wake characteristics of interaction of shear layers from the cylinder with those from the downstream plate. For Z/D ≥ 1.1, there is again, yet a smaller critical horizontal spacing after which vortices interact with decreased downstream plate interference. In this vertical separation distance range, a gap flow between the plate and the cylinder plays a determining role on the formation length and St number of vortices for small horizontal spacing values.  相似文献   

18.
We investigate the relation between the structure and the viscoelastic behavior of a model polymer nanocomposite system based on a mixture of titanium dioxide (TiO2) nanoparticles and polypropylene. Above a critical volume fraction, Φ c, the elasticity of the hybrids dramatically increases, and the frequency dependence of the elastic and viscous moduli reflects the superposition of the independent responses of the suspending polymer melt and of an elastic particle network. In addition, the elasticity of the hybrids shows critical behavior around Φ c. We interpret these observations by hypothesizing the formation of a transient network, which forms due to crowding of particle clusters. Consistent with this interpretation, we find a long-time, Φ-dependent, structural relaxation, which emphasizes the transient character of the structure formed by the particle clusters. For times below this characteristic relaxation time, the elasticity of the network is Φ-independent and reminiscent of glassy behavior, with the elastic modulus, G, scaling with frequency, ω, as Gω 0.3. We expect that our analysis will be useful for understanding the behavior of other complex fluids where the elasticity of the components could be superimposed.  相似文献   

19.
The variational solution of the nonlinear Signorini contact problem determines also the active contact zone Γ c . If the latter is known, then the elastic field is a solution of a linear mixed boundary value problem in which on Γ c the normal displacement and tangential traction are given, while on the non-contact part the total traction is zero. Such mixed boundary conditions in general generate singularities of the solution's stress field at the points P ( k ) where the boundary conditions change. For smooth data, however, the variational solution of the Signorini contact problem actually belongs to H 2(Ω)2, which implies the disappearance of these singularities, i.e., that the corresponding stress intensity factors vanish. This paper is devoted to the characterization of the active contact zone Γ c by the vanishing stress intensity factors including their sensitivity with respect to varying Γ c for two-dimensional problems provided that Γ c consists of a finite number of intervals. We use the method of asymptotic expansions and derive an explicit formula for the sensitivity, which is rigorously justified by employing weighted Sobolev spaces with detached asymptotics. These results can be used to determine the points P ( k ) with a corresponding Newton iteration. Accepted July 6, 2000?Published online January 22, 2001  相似文献   

20.
Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001–1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号