首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platinum nanoparticles (PtNPs) are synthesized by methylviologen-mediated reduction of PtCl2 at the potentials of the MV2+/MV?+ redox couple in 40% aqueous DMF solution. In the absence of stabilizing agents and in the presence of a stabilizer in the form of spherical silica NPs or alkylamine-modified silica NPs (SiO2-NHR), a part of PtNPs (14–18%) are deposited on the electrode while the rest of particles remain in solution to form coarse aggregates which precipitate. In the latter case, PtNPs are also partly bound to form individual ultrafine NPs (3 ± 2 nm) on the SiO2-NHR surface. In the presence of polyvinylpyrrolidone (PVP), the generated PtNPs (18 ± 9 nm) neither aggregate nor deposit on the cathode but are completely stabilized in solution being encapsulated within the PVP matrix. The obtained PtNPs are characterized by the methods of dynamic light-scattering and electron microscopy.  相似文献   

2.
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278  相似文献   

3.
Highly monodispersed electrophoretic particles of size ranging from 550 to 160 nm could be prepared through dispersion-polymerization of methyl methacrylate and ethylene glycol dimethacrylate in presence of pyrazoline nanoparticles in a methanol-water mixture. The size of the fabricated electrophoretic particles could be controlled by adjusting the concentration of surfactant. Stearic acid, used as surfactant during the polymerization process also acts as charge controlling additive to control the electrophoric mobility of the particles. Maximum electrophoric mobility (-7.513×10(-5) cm(2)/Vs) was obtained for the 400 nm electrophoretic particles prepared with 1.5 wt.% of stearic acid surfactant. The electrophoric display cells prepared with our electrophoretic particles reveal good current voltage characteristics and color change under applied bias voltage.  相似文献   

4.
Capillary electrophoresis is used to separate ultrasmall ( approximately 1 nm) carboxylate functionalized Si nanoparticles (Si-np-COO(-)) prepared via hydrosilylation with an omega-ester 1-alkene. The electropherograms show a monodisperse Si core size with one or two carboxylate groups added to the surface. On-column detection of their laser-induced fluorescence demonstrates that the individual Si-np-COO(-) have narrow emissions (full width at half maximum = 30-40 nm) with a nearly symmetric lineshape. Preparative scale electrophoresis should be a viable route for purification of the Si-np-COO(-) for further study and future applications.  相似文献   

5.
Properties of PtRu nanoparticles prepared using high-intensity sonochemistry are reported. Syntheses were carried out in tetrahydrofuran (THF) containing Ru3+ and Pt4+ in a fixed mole ratio of either 1:10 or 1:1. X-ray diffraction measurements confirmed sonocation produces an alloy phase and showed that the composition of the nanometer scale metal particles is close to the mole fraction of Ru3+ and Pt4+ in solution with deviations that tend toward Ru enrichment in the alloy phase. The materials gave responses that are similar in terms of peak potential and current density, referenced to the catalyst active surface area, to those of bulk alloys in voltammetry experiments involving CO stripping and CH3OH electrochemical oxidation in 0.1 M H2SO4. The results show that sonochemical methods have the potential to produce nanometer scale bimetallic electrocatalysts that possess alloy properties. The materials have application in mechanistic studies of fuel cell reactions and as platforms for the development of CO tolerant fuel cell catalyst.  相似文献   

6.
A facile protocol to prepare ultrasmall citrate-coated cobalt ferrite NPs was proposed from the comparison between one-step and two-step chemical routes based on the polyol method. Infrared spectroscopy, thermogravimetry and zeta potential data indicated different coordinations of citrate groups affecting the NP colloidal stability. The magnetic core size and saturation magnetization were also affected. The surface-modified NPs prepared by the one-step route presented superior colloidal stability, low core (2.9 nm) and hydrodynamic (4.8 nm) sizes, high magnetization (45 emu/g), and can be considered suitable platforms to produce nanoparticle-biomolecule conjugates.  相似文献   

7.
8.
9.
Laser-induced fragmentation of indium tin oxide nanoparticles was performed in water by laser irradiation with various laser energies. Fragmentation of the nanoparticles proceeded with increased laser energy. The fragmented nanoparticles showed high transmittance in the visible region and lower transmittance in the ultraviolet and infrared regions. The optical band gap of the fragmented nanoparticles increased with decreasing average particle size. The increase of the band gap was possibly caused by the Burstein-Moss effect due to the increasing concentration of carriers generated by the surface defects of the oxygen vacancies on smaller nanoparticles.  相似文献   

10.
11.
Polyacrylonitrile nanoparticles in sizes ranging from approximately 35 to 270 nm were prepared by dispersion/emulsion polymerization of acrylonitrile in a continuous aqueous phase in the presence of potassium persulfate as initiator and various alkyl-sulfate and sulfonate surfactants. The influence of various polymerization parameters (e.g., concentration of monomer and initiator, type and concentration of surfactant, temperature and time of polymerization, ionic strength, pH and co-solvent concentration) on the properties (e.g., size and size distribution, yield, stability, etc.) of the particles has been investigated. The polymerization of acrylonitrile may occur in two major locations: in the aqueous continuous phase (dispersion polymerization) and/or within the surfactant micelles (emulsion polymerization). A discussion concerning the role of these two mechanisms under different conditions, including comparison with previous literature, is also presented. Surface and bulk characterizations of the particles were performed by methods such as transmission and scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, zeta potential, and gravimetric measurements.  相似文献   

12.
Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

13.
The doubly thermo-responsive triblock copolymer nanoparticles of polystyrene-block-poly(N-isopropylacrylamide)-block-poly[N,N-(dimethylamino) ethyl methacrylate] (PS-b-PNIPAM-b-PDMAEMA) are successfully prepared through the seeded RAFT polymerization in situ by using the PS-b-PNIPAM-TTC diblock copolymer nanoparticles as the seed. The seeded RAFT polymerization undergoes a pseudo-first-order kinetics procedure, and the molecular weight increases with the monomer conversion linearly. The hydrodynamic diameter (D h) of the triblock copolymer nanoparticles increases with the extension of the PDMAEMA block. In addition, the double thermo-response behavior of the PS-b-PNIPAM-b-PDMAEMA nanoparticles is detected by turbidity analysis, temperature-dependent 1H-NMR analysis, and DLS analysis. The seeded RAFT polymerization is believed as a valid method to prepare triblock copolymer nanoparticles containing two thermo-responsive blocks.  相似文献   

14.
Al2O3 and ZnO filled poly(methyl methacrylate) nanocomposites were synthesized by free radical (bulk) polymerization. Efficient dispersion was achieved by predispersing the nanoparticles in propylene glycol methyl ether acetate (PGMEA) followed by ultrasonication of nanoparticles into the PMMA syrup. Thermal analysis confirms chemisorption between PGMEA and metal oxide particles. The addition of nanoparticle affects degradation mechanism and consequently improves thermal stability of PMMA. The reduction of polymer chain mobility and the tendency of nanoparticles to eliminate free radicals are the principal effects responsible for these enhancements.  相似文献   

15.
Ag-Cu alloy nanoparticles of various compositions were synthesized by the polyol process and characterized by UV-Visible, fluorescence and XRD techniques. The particle size calculated by Debye Scherrer's equation was found to decrease from 28 to18 nm with the increase in mole fraction of Cu in Ag-Cu alloy nanoparticles due to crystal lattice contraction. The appearance of the spectral peaks of alloy nanoparticles between the peaks of pure Ag and Cu revealed the formation of alloy nanoparticles. The optical properties were found to vary with composition and the Ag-Cu alloy of 1:1 composition showed a maximum value of extinction coefficient. The results of fluorescence spectroscopy revealed Cu as a quencher. Physical parameters, such as the total number of atoms in alloy nanoparticle, number of binding sites, binding constant and free energy of binding were calculated from fluorescence data.  相似文献   

16.
Gold nanoparticles heavily functionalized with oligonucleotides have been used in a variety of DNA detection methods. The optical properties of three-dimensional aggregates of Au nanoparticles in solution or deposited onto suitable surfaces have been analyzed to detect hybridization processes of specific DNA sequences as possible alternatives to fluorescent labeling methods. This paper reports on the preparation of gold nanoparticles directly deposited onto the surface of silicon (Si) and sapphire (Al2O3) substrates by a physical methodology, consisting in the thermal evaporation of a thin Au film and its successive annealing. The method guarantees the preparation of monodispersed single-crystal Au nanoparticles with a strong surface plasmon resonance (SPR) peak centered at about 540 nm. We show that the changes of SPR excitation before and after DNA functionalization and subsequent hybridization of Au nanoparticles immobilized onto Si and Al2O3 substrates can be exploited to fabricate specific biosensors devices in solid phase.  相似文献   

17.
We report here a facile electrochemical method on the preparation of antimony nanoparticles (NPs) by dispersing a bulk antimony electrode under highly cathodic polarization in different media at room temperature, requiring neither precursor ions nor organic capping agents. The dispersion of bulk antimony in a tetrabutyl ammonium bromide (TBAB) acetonitrile solution involved the formation and oxidation of an unstable Zintl compound of antimony, and the as-prepared Sb NPs were readily transferred into Sb–Sb2O3 core–shell NPs during the post treatment and characterization because of the surface oxidation of Sb NPs by oxygen in the air. In contrast, Sb NPs prepared by dispersing the bulk antimony cathode in a blank aqueous NaOH solution were oxygen-resistant in the air because the strongly adsorbed hydroxide ions from the solution could stabilize the Sb NPs. The incorporation of sodium, the formation/oxidation of polyanions of antimony (Zintl ions), and the formation/decomposition of unstable antimony hydrides may all take effect for the cathodic dispersion of bulk antimony electrodes in the NaOH solution. Transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these NPs.  相似文献   

18.
Attachment of nickel nanoparticles on multiwalled carbon nanotubes (MWCNTs) was conducted to explore the influence of Ni loading on the electrochemical capacitance of MWCNT electrodes. A chemical impregnation leaded to homogeneously disperse Ni particles onto the surface of MWCNTs, and the Ni particles were found to be an average size of 30–50 nm. The capacitive behavior of the MWCNT electrodes was investigated in 6 M KOH, by using cyclic voltammetry (CV), charge–discharge cycling, and ac electrochemical impedance spectroscopy. CV measurements showed that the Faradaic current was found to increase with the Ni coverage, indicating that the presence of Ni would enhance the pseudocapacitance through the redox process. Equivalent circuit analysis indicated that both of electrical connection and charge transfer resistances accounted for the major proportion of the overall resistance and were found to decrease with the amount of nickel. A linearity relationship between the total capacitance and the Ni population reflected that each Ni particle exhibits an identical electrochemical activity in enhancing the electrochemical capacitance. The overall electrochemical capacitance (including double layer capacitance and pseudocapacitance) of Ni-MWCNT electrode can reach a maximum of 210 F/g over 500 cycles.  相似文献   

19.
The structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by the electrochemical dispersion of metals under the action of pulse alternating current in a solution of NaOH were studied. Using X-ray diffraction analysis and scanning and transmission electron microscopy, it was found that the synthesized Pt/C catalysts contained active constituent particles with the average size D 111 = 10.6 nm with a predominantly cubic shape. Upon the dispersion of a Pt3Ni alloy, the Pt-Ni/C catalyst containing the particles of a stoichiometric metal phase of Pt3Ni (D 111 = 9.6 nm) and also Pt x Ni particles (x > 3) enriched in platinum (D 111 = 8.1 nm). The synthesized catalysts possessed high electrocatalytic activity and stability in the reaction of methanol oxidation. The characteristics of these catalysts as anodes in the membrane-electronic unit of a hydrogen-air solid-polymer fuel cell were studied.  相似文献   

20.
A new method is applied to prepare stable aqueous dispersion of magnetic iron oxide nanoparticles (MNPs) by biocompatible maleate polymers. Fe3O4 magnetic core–shell nanoparticles are obtained via forming an inclusion complex between carboxylic acid groups of maleated biocompatible polymers shell and Fe3O4 MNPs core surface. Maleate polymers are synthesized via esterification of poly(ethylene glycol), poly(vinyl alcohol) and starch with maleic anhydride (MA). The Fe3O4 magnetic core–shell nanoparticles are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The obtained magnetic core–shell nanoparticles exhibit superparamagnetic property and reveal long‐term aqueous stability. This work represents a valid methodology to produce highly stable aqueous dispersion of Fe3O4 MNPs ferrofluids which can be expected to have great potential as contrast agent for magnetic resonance imaging. Furthermore, the shell composition of biocompatible maleate polymers with double bond of MA as crosslinker agent allows the polymerization with other monomers to design preferred drug delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号