首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH2)11(OCH2CH2)6OMe (EG6OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C), pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol %) show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.  相似文献   

2.
There is still a lack of deep understanding on the reaction kinetics and mechanism of thiol etching of gold. Herein, by using the sensor of quartz crystal microbalance (QCM) as the sacrificial probe, the etching reaction of gold has been studied by employing cysteamine (CS) as a typical thiol etchant. The etching reaction is verified as diffusion-controlled and shows a half-order reaction kinetics. It is demonstrated that intact thiol and amino on CS are both crucial for its etching ability to gold. Applied potentials can affect the electron transfer and hence can be used to regulate the gold etching. Our results also reveal that only two carbon atoms of the spacer between thiol and amino on CS are very critical to the excellent etching ability. This work exhibits a new route to explore the thiol etching reaction of gold and elucidates the reaction kinetics and mechanism.  相似文献   

3.
Oxalic acid (Ox) and 1,2,3,4-cyclobutanetetracarboxylic acid (CBTCA) were employed as capping ligands in the preparation of gold colloids. FTIR indicated that Ox adopted a linear configuration through one oxygen atom and one gold atom, while CBTCA adopted a bridge configuration through two oxygen atoms and two gold atoms. Ox-gold colloids exhibited aggregation upon addition of NaClO(4), while they remained as isolated particles upon NaCl. For CBTCA-gold colloids, not NaClO(4) but NaCl resulted in aggregation. The reversed results were considered to have been influenced by the different configurations of Ox and CBTCA, which were combined results of the Lewis basicity and steric hindrance of the added ions.  相似文献   

4.
It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here, we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances, and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one, or two thiol hydrogen atoms. We find that in most cases, the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum as a gold STM tip approaches the intact S-H group at the end of a molecule bound at its other end to a second electrode. We predict the frequency of a vibrational mode of the thiol H atom to increase by a factor ~2 as the gap between the tip and molecule narrows. Therefore, IETS should be able to track the approach of the tip towards the thiol group of the molecule and detect the detachment of the thiol H atom from the molecule when it occurs.  相似文献   

5.
Electrophoretic properties of DNA-modified colloidal gold nanoparticles   总被引:1,自引:0,他引:1  
Oligonucleotide-modified gold nanoparticles are used in various kinds of colorimetric DNA targeting biosensors and nanoparticle assembly techniques. Herein we focus on how the size of 13 nm gold colloids changes upon DNA modification. We have performed a series of electrophoresis experiments of particles modified both thiol specifically and nonspecifically with single- and double-stranded oligonucleotides of different lengths (12- and 25-mers). Both unmodified and DNA-modified particles migrated at constant velocity in different concentrations of Metaphor agarose gels. Linear Ferguson plots were obtained for all samples, and on the basis of the Ogston model approach, we present how the particle size increases in different amounts depending on the oligonucleotide length, secondary structure, and type of modification (specific or nonspecific). Thiol specifically modified particles obtain a thicker DNA layer since the oligonucleotides are only anchored to the particle in one end and thus stand up from the surface more compared to nonspecifically modified ones, where the oligonucleotides tend to lay more or less flat on the surface with multiple adsorption points. However the thickness of the DNA layer for the thiol specifically modified particles is smaller than the length of a corresponding stretched oligonucleotide, suggesting a flexibility of the thiol-bound strands allowing them to tilt relative to the particle surface.  相似文献   

6.
We studied the interaction between benzene thiol and thiolate molecules, and gold clusters made of 1 to 3 atoms, by means of ab initio density functional theory in the local density approximation. We find that the thiolate is energetically more stable than the thiol, however the process of detachment of H from the thiol appears to be possibly mediated by the intermediate step of H chemisorption on Au. Cleavage of the S-H bond is accompanied by a 90 degrees rotation of the molecule around the S-Au bond, showing a strong steric specificity. Such a rotation is induced by the relative energy shift of the S atom p orbitals with respect to the benzene pi ring and the Au d orbitals. By analyzing the correlation of the bond energy, bond lengths, and HOMO-LUMO gap with the number of S-Au bonds, we find that the thiolate S atom appears to prefer a low-coordination condition on Au clusters.  相似文献   

7.
Tri- and nonaferrocenyl thiol dendrons have been synthesized and used to assemble dendronized gold nanoparticles either by the ligand-substitution method from dodecanethiolate-gold nanoparticles (AB(3) units) or Brust-type direct synthesis from a 1:1 mixture of dodecanethiol and dendronized thiol (AB(9) units). The dendronized colloids are a new type of dendrimers with a gold colloidal core. Two colloids containing a nonasilylferrocenyl dendron have been made; they bear respectively 180 and 360 ferrocenyl units at the periphery. These colloids selectively recognize the anions H(2)PO(4)(-) and adenosine-5'-triphosphate (ATP(2)(-)) with a positive dendritic effect and can be used to titrate these anions because of the shift of the CV wave even in the presence of other anions such as Cl(-) and HSO(4)(-). Recognition is monitored by the appearance of a new wave at a less positive potential in cyclic voltammetry (CV). The anion HSO(4)(-) is also recognized and titrated by the dendronized colloid containing the tris-amidoferrocenyl units, because of the progressive shift of the CV wave until the equivalence point. These dendronized colloids can form robust modified electrodes by dipping the naked Pt electrode into a CH(2)Cl(2) solution containing the colloids. The robustness is all the better as the dendron is larger. These modified electrodes can recognize H(2)PO(4)(-), ATP(2)(-) and HSO(4)(-), be washed with minimal loss of adsorbed colloid, and be reused.  相似文献   

8.
The outermost atomic layer of perfluorinated thiol monolayers on gold and poly(tetrafluoroethylene) (PTFE) is analyzed by low-energy ion scattering. Absolute quantification of fluorine density in this layer was achieved after calibrating the fluorine signal with a freshly cleaved LiF(100) single crystal. The fluorine density of monolayers of a C8F17-thiol on gold was 1.48 x 10(15) F atoms/cm2, whereas for PTFE a value of 1.24 x 1015 F atoms/cm2 was observed. This difference was explained by the different tilt angles of the thiol on gold and PTFE chains with respect to the surface normal. Both a configurational and a molecular interpretation on the perfluorinated thiol monolayer on gold are given.  相似文献   

9.
A series of 2-alkyl-2-methylpropane-1,3-dithiol derivatives with increasing alkyl chain lengths (i.e., CH3(CH2)mC(CH3)[CH2SH]2, where m = 7, 9, 11, 13, 15) were synthesized and used to generate self-assembled monolayers (SAMs) on gold. The resulting monolayers were analyzed by ellipsometry, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy, and X-ray photoelectron spectroscopy. These data were compared with those obtained on SAMs on gold derived from normal alkanethiols (CH3(CH2)(m+2)SH) and 2-monoalkylpropane-1,3-dithiols (CH3(CH2)(m)CH[CH2SH]2) having the same number of carbon atoms in the primary chain. The results demonstrate that the 2-alkyl-2-methylpropane-1,3-dithiols generate conformationally disordered monolayer films in which the density of alkyl chains is less than those generated from normal alkanethiols and the 2-monoalkylpropane-1,3-dithiols.  相似文献   

10.
Despite the numerous studies on the self‐assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol–gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X‐ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol–gold interface. The long‐chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short‐chain alkylthiol SAMs were adsorbed more strongly than long‐chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol–gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single‐molecule adsorption than self‐assembly, whereas for long chains, interactions between alkyl chains drive the system to self‐assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur–gold interface.  相似文献   

11.
Corrole complexes with gold(I) and gold(III) were synthesized and their structural, photophysical, and electrochemical properties investigated. This work includes the X-ray crystallography characterization of gold(I) and gold(III) complexes, both chelated by a corrole with fully brominated β-pyrrole carbon atoms. The mononuclear and chiral gold(I) corrole appears to be the first of its kind within the porphyrinoid family, while the most unique property of the gold(III) corrole is that it displays phosphorescence at ambient temperatures.  相似文献   

12.
The assembly of nanoparticles into large, two-dimensional structures provides a route for the exploration of collective phenomena among mesoscopic building blocks. We characterize the structure of Langmuir monolayers of dodecanethiol-ligated gold nanoparticles with in situ optical microscopy and X-ray scattering. The interparticle spacing increases with thiol concentration and does not depend on surface pressure. The correlation lengths of the Langmuir monolayer crystalline domains are on the order of five to six particle diameters. Further compression of the monolayers causes wrinkling; however, we find that wrinkled monolayers with excess thiol can relax to an unwrinkled state following a reduction of surface pressure. A theoretical model based on van der Waals attraction and tunable steric repulsion is adopted to explain this reversibility.  相似文献   

13.
Four different carboranethiol derivatives were used to modify the surfaces of gold nanoparticles and flat gold films. The novel materials engendered from these modifications are extraordinarily stable species with surfaces that support self-assembled monolayers of 1-(HS)-1,2-C2B10H11, 1,2-(HS)2-1,2-C2B10H10, 1,12-(HS)2-1,12-C2B10H10, and 9,12-(HS)2-1,2-C2B10H10, respectively. Surprisingly, characterization of these materials revealed that a number of molecules of the carboranethiol derivatives are incorporated inside the nanoparticles. This structural feature was studied using a number of techniques, including X-ray photoelectron spectroscopy (XPS), UV-vis, and IR spectroscopies. Thermal desorption experiments show that carborane molecules detach and leave the nanoparticle surface mostly as 1,2-C2B10H10 isotopic clusters, leaving sulfur atoms bound to the gold surface. The surfaces of both the gold nanoparticles and the flat gold films are densely packed with carboranethiolate units. One carborane cluster molecule occupies an area of six to seven surface gold atoms of the nanoparticle and eight surface gold atoms of the flat film. XPS data showed that molecules of 1,12-(HS)2-1,12-C2B10H10 bind to the flat gold surface with only half of the thiol groups due to the steric demands of the icosahedral carborane skeleton. Electrochemical measurements indicate complete coverage of the modified gold surfaces with the carboranethiol molecules.  相似文献   

14.
本文对标题化合物用X射线法测定其晶体结构.键长显示两个硫原子和碳碳双键之间的电子效应相近.  相似文献   

15.
In this article, we introduced a novel electrochemical biosensor for the detection of microRNA-126. The biosensor utilizes a hybridization assay combined with multi-walled carbon nanotubes and gold nanorod-decorated screen-printed carbon electrodes. For electrode preparation, gold nanorods were first immobilized onto the surface of bare and multi-walled carbon nanotube-modified screen-printed carbon electrodes, and the thiol tagged-capture probe was immobilized on the electrode surface through gold and thiol group interaction. After the immobilization, thiol tagged-capture probe hybridized with the target sequence. Under optimum conditions, we determined limit of detection (LOD) and limit of quantification (LOQ) as high as 11 nM and 36 nM, respectively.  相似文献   

16.
Functionalized multiwall carbon nanotube/gold nanoparticle composites   总被引:14,自引:0,他引:14  
Multiwall carbon nanotubes (MWCNTs) were chemically oxidized in a mixture of sulfuric acid and nitric acid (3:1) while being ultrasonicated. The effect of oxidative ultrasonication at room temperature on development of functional groups on the carbon nanotubes was investigated. The dispersability and the carboxylic acid group concentration of functionalized MWCNTs (fMWNTs) varied with reaction time. The concentration of carboxylic acid groups on fMWNTs increased from 4 x 10(-4) mol/g of fMWNTs to 1.1 x 10(-3) mol/g by doubling the treatment period from 4 to 8 h. The colloidal stability of aqueous fMWCNTs dispersions was enhanced through elongated oxidation. fMWCNTs that were reacted longer than 4 h did not precipitate in aqueous media for at least 24 h. The layer-by-layer self-assembly of polyelectrolytes on fMWCNTs was characterized by zeta potential measurements. The zeta potential of fMWCNTs changed from negative charge to positive charge when cationic polyelectrolytes were self-assembled on their surface. With addition of anionic polyelectrolytes, cationic polyelectrolyte coated fMWCNTs showed the expected charge reversal as expected for multilayer self-assembly. Complex formation of positively charged gold nanoparticles and negatively charged fMWCNTs was achieved with and without polyelectrolyte coatings by electrostatic interaction. The complex formation was characterized by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The here found complex formation of positively charged colloidal gold and defect sites on fMWNTs indicates the location of functional groups on carbon nanotubes. It is suggested that positively charged colloids such as gold nanoparticles could be used for detection of defect sites on carbon nanotubes.  相似文献   

17.
Consecutive synthesis methodologies for the preparation of the gold(I) carboxylates [(Ph(3)P)AuO(2)CCH(2)(OCH(2)CH(2))(n)OCH(3)] (n = 0-6) (6a-g) are reported, whereby selective mono-alkylation of diols HO(CH(2)CH(2)O)(n)H (n = 0-6), Williamson ether synthesis and metal carboxylate (Ag, Au) formation are the key steps. Single crystal X-ray diffraction studies of 6a (n = 0) and 6b (n = 1) were carried out showing that the P-Au-O unit is essentially linear. These compounds were applied in the formation of gold nanoparticles (NP) by a thermally induced decomposition process and hence the addition of any further stabilizing and reducing reagents, respectively, is not required. The ethylene glycol functionalities, providing multiple donating capabilities, are able to stabilise the encapsulated gold colloids. The dependency of concentration, generation time and ethylene glycol chain lengths on the NP size and size distribution is discussed. Characterisation of the gold colloids was performed by TEM, UV/Vis spectroscopy and electron diffraction studies revealing that Au NP are formed with a size of 3.3 (±0.6) to 6.5 (±0.9) nm in p-xylene with a sharp size distribution. Additionally, a decomposition mechanism determined by TG-MS coupling experiments of the gold(i) precursors is reported showing that 1(st) decarboxylation occurs followed by the cleavage of the Au-PPh(3) bond and finally release of ethylene glycol fragments to give Au-NP and the appropriate organics.  相似文献   

18.
Highly concentrated, well-stable gold colloids can be prepared directly from an amine-bearing polyelectrolyte-HAuCl4 aqueous solution at room temperature. It is found that increasing molar ratio of polyelectrolyte to gold leads to increasing particle size. UV-vis spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS) were used to characterize the products thus formed.  相似文献   

19.
Multiwall carbon nanotubes (MWNT) were modified orderly with carboxyl groups and amino groups. The MWNT/gold nanoparticle composites were formed when the amino‐functionalized MWNT was interacted with gold colloids. The functionalized MWNT was characterized using Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The amino‐functionalized MWNT allows further attaching gold nanoparticles through electrostatic interaction between the negatively charged gold nanoparticles and amino groups on the surface of the MWNT. The composite of gold nanoprticles and amino‐functionalized MWNT was characterized by transmission electron microscopy. This method decorating carbon nanotubes can be used to identify the location of functional groups, i.e. defect sites on carbon nanotubes.  相似文献   

20.
For an ideal solution, an analytical expression for the macromolecule concentration, electrolyte concentration, and solution osmotic pressure is obtained on the basis of the van't Hoff equation and the Donnan equilibrium. The expression was further applied to a colloid solution of about 3 nm glutathione-stabilized gold nanoparticles. The concentration of the colloid solution and the average net ion charge number for each gold nanoparticle were determined with the measured osmotic pressure data. Meanwhile, the gold contents of the solutions were analyzed by means of atomic absorption spectrophotometry, and the results were combined with the determined concentration of gold nanoparticle colloids to determine that the average number of gold atoms per 3 nm gold nanoparticle is 479, which is 1/1.7 times the number of atoms in bulk metallic gold of the same size. The same proportion also occurred in the 2 nm 4-mercaptobenzoic acid monolayer-protected gold nanoparticles prepared by Ackerson et al., who utilized the quantitative high-angle annular dark-field scanning transmission electron microscope to determine the average number of gold atoms per nanoparticle (Ackerson, C. J.; Jadzinsky, P. D.; Sexton J. Z.; Bushnell, D. A.; Kornberg, R. D. Synthesis and Bioconjugation of 2 and 3 nm-Diameter Gold Nanoparticles. Bioconjugate Chem. 2010, 21, 214-218).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号