首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The use of quick, easy, cheap, effective, rugged and safe method followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) was found to be the best combination for multiresidue determination of eight acidic herbicides in fruits and vegetables in terms of high recovery, short time of analysis, low cost and safety. Recent few articles were published for determination of different classes of acidic herbicides in single multiresidue method. In the present study, mass spectrophotometric conditions were individually optimised for eight acidic herbicides, namely 2,4-dichlorophenoxyacetic acid, bentazone, bromoxynil, fluazifop, fluroxypyr, imazethapyr, ioxynil and triclopyr to achieve maximum sensitivity and selectivity in multiple reaction monitoring (MRM) mode allowing simultaneous identification and quantification in a single run. Identity confirmation and quantitation were attained by using negative electrospray ionisation LC-MS/MS (ESI?) in MRM mode. Due to LC-MS/MS signal suppression, determination of pesticide residues was based on matrix-matched standard calculations. Most of the evaluated compounds showed a recovery ranging from 81% to 113% with relative standard deviations less than 16 % indicating acceptable precision. The precision and accuracy of the method were determined from recovery experiments on six replicates of spiked blank strawberry and green beans samples at 0.01, 0.05 and 0.1 mg/kg. The developed assay was linear over concentration range of 0.01–0.5 µg/mL, with correlation coefficient greater than 0.99 at the limit of quantitation 0.01 µg/mL. The proposed assay was successfully applied for the analysis of the studied acidic herbicides residues in two proficiency test samples. This wide scope assay protocol is applicable for monitoring acidic herbicides residues in fruits and vegetables by national regulatory authorities and accredited labs in order to help ensuring the safety of such widely used food products.  相似文献   

2.
Summary A new method for the simultaneous identification and quantification of base/neutral and acidic pesticides at a low nanogram per liter concentration level in natural waters is presented. The method includes enrichment of the compounds by solid phase extraction on graphitized carbon black, followed by sequential elution of the base/neutral and acidic pesticides. Identification and quantification of the compounds is performed with HPLC-ESI-MS. This procedure involves passing 1 L of ground water and 2 L of drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. A conventional 4.6-mm-i.d. reversed phase LC C-18 operating with a 1 mL min−1 flow of the mobile phase was used to chromatograph the analytes. A flow of 100 μL min−1 of the column effluent was diverted to the ESI source. The ESI source was operated in positive ion mode for base/neutral pesticides and in negative-ion mode for acid pesticides. For the analyte considered, the response of the mass detector was linearly related to the amount of the analytes injected between 5 and 250 ng. In all cases, recoveries of the analytes were better than 90%. The limit of detection (signal-to-noise ratio=3) of the method for the pesticides considered in drinking water samples was estimated to be about 3–10 ng L−1.  相似文献   

3.
In this work, an isotope dilution method for determination of selected acidic herbicides by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) was developed for surface water samples. Average percent recoveries of native analytes were observed to be between 70.8 and 93.5% and average recoveries of labeled quantification standards [(13)C(6)]2,4-D and [(13)C(6)]2,4,5-T were 85.5 and 101%, respectively. Using this method, detection limits of 0.05 ng/L for dicamba, MCPA, MCPP, and triclopyr, and 0.5 ng/L for 2,4-D were routinely achieved. The method was applied to measuring the concentration of these analytes in surface water samples collected from five sampling locations in the Lower Fraser Valley region of British Columbia, Canada. All of the herbicides monitored were detected at varying levels in the surface water samples collected. The highest concentrations detected for each analyte were 345 ng/L for 2,4-D, 317 ng/L for MCPA, 271 ng/L for MCPP, 15.7 ng/L for dicamba, and 2.18 ng/L for triclopyr. Average detection frequencies of the herbicides were 95% for MCPA, 80% for MCPP, 70% for dicamba, 65% for 2,4-D, and 46% for triclopyr. Seasonal variations of herbicide levels are also discussed.  相似文献   

4.
建立了多类粮食作物中15种磺酰脲类除草剂的超高效液相色谱-串联质谱联用仪(UPLC/MS/MS)多离子监测(MRM)的多残留检测方法。样品经乙腈提取,乙腈饱和的正己烷液-液分配,石墨化碳氨基小柱净化,采用UPLC-MS/MS(ESI+)测定。方法中各种磺酰脲类除草剂在5~200μg/L浓度范围内线性良好,相关系数在0.9995~0.9999。在5~100μg/kg范围内,平均加标回收率在71.6%~115.3%之间,相对标准偏差不大于15%。各种药物的定量限(S/N≥10)均可达到5μg/kg。该方法可同时满足大豆、大米、玉米等多种粮食中磺酰脲类除草剂的检测需求。  相似文献   

5.
In the period 2003-2005 a study was conducted to determine the occurrence, spatial and temporal distribution of five acidic herbicides in the Lower Fraser Valley (LFV) region of British Columbia, Canada. A high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) method capable of detecting analytes at the sub ng/L level was developed for this study. Samples were collected and analyzed from two references, five agricultural, two urban and five agricultural and urban mixed sites. Only (4-chloro-2-methylphenoxy)acetic acid and triclopyr were detected at the reference sites. The highest concentration of herbicide detected at the reference sites was 0.109ng/L for (4-chloro-2-methylphenoxy)acetic acid. Varying levels of all of the herbicides monitored were detected at the urban, agricultural and the mixed sites. For the urban sites the highest concentration of herbicide detected was 66.6ng/L for 2-(4-chloro-2-methylphenoxy)propanoic acid. For the agricultural sites the highest concentration of herbicide detected was 345ng/L for (2,4-dichlorophenoxy)acetic acid (2,4-D). For the mixed sites the highest concentration of herbicide detected was 1230ng/L for 2,4-D. Overall the mixed sites showed highest concentrations and detection frequencies followed by the agricultural and urban sites. With few exceptions higher concentrations of herbicides were observed for samples collected during spring than for samples collected during fall. The detected concentrations of herbicides were evaluated against established water quality criteria. Herbicide data presented in this study provide reference levels for future pesticide monitoring programs in the region.  相似文献   

6.
An evaluation was made of the feasibility of using reversed-phase liquid chromatography/tandem mass spectrometry with an electrospray interface (LC/ESI-MS/MS) to measure traces of phenoxyacid herbicides and their metabolites in surface and drinking water samples. The procedure involved passing 0.5 L of river and drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. Recovery was higher than 85% irrespective of the aqueous matrix in which the analytes were dissolved. A conventional 4.6-mm i.d. reversed-phase LC C-18 column operating with a mobile phase flow rate of 1 mL/min was used to chromatograph the analytes. A flow of 200 microL/min of the column effluent was diverted to the ESI source. The limits of detection (signal-to-noise ratio = 3) of the method for the pesticides considered in drinking and surface water samples are less than 0.1 ng/L for phenoxyacid herbicides, and about 5-10 ng/L for their metabolites (2,4-dichlorophenol and 4-chloro-2-methylphenol).  相似文献   

7.
李娜  李辉  邵辉  刘磊  张玉婷  郭永泽 《色谱》2011,29(4):346-352
建立了人参中15种磺酰脲类除草剂残留量的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法。样品中残留的农药经乙腈提取、石墨化炭黑(ENVI-Carbon)固相萃取柱净化后,使用含1%(v/v)甲酸的甲醇-二氯甲烷(20:80, v/v)洗脱,UPLC分离,最后采用电喷雾串联质谱在正离子多反应监测(MRM)扫描模式下进行测定。15种农药在2~100 μg/L的质量浓度范围内线性关系良好,相关系数在0.996和0.999之间。对人参中15种农药在5、25和50 μg/kg 3个添加水平下的回收率进行了测定,其平均回收率在84.9%和104.3%之间,相对标准偏差在2.4%和11.9%之间。各种农药的定量限均为5 μg/kg。该方法操作简便,净化效果好,灵敏度、准确度和精密度均符合多残留检测技术的要求,可为中药材中磺酰脲类除草剂污染状况调查提供检测方法支持。  相似文献   

8.
This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested low level. The major observed effects were verified with statistical evaluation of the data employing backwards ordinary least-square regression. All tested column-switching modes hyphenated to ESI- or APCI-MS-MS allowed the on-line multi-residue analysis of acidic pesticides in the reference water down to a level of 0.1 microg/l in less than 10 min, emphasizing the feasibility of such an approach in this field of analysis.  相似文献   

9.
A method for sample preparation of methoxy-s-triazine herbicides using supported liquid membrane extraction has been developed. The analytes were selectively extracted from the donor solution of pH 7.0 into a porous polytetrafluoroethylene (PTFE) membrane impregnated with di-n-hexyl ether. After diffusion through the hydrophobic membrane the analytes were irreversibly trapped in the acidic acceptor phase of pH 1.0. The donor waste was monitored for estimating the amount of sample trapped at certain time intervals. Comparison of the selectivity with solid-phase extraction has been performed. A low detection limit, ca. 15 ng/l, has been obtained with liquid membrane extraction.  相似文献   

10.
Summary A heterogeneous enzyme-linked immunosorbent assay (ELISA) for the screening of triazine herbicides, e.g. atrazine in ground and surface water is reported, which is able to detect the pesticide at concentrations down to 10 ng/l without a preconcentration step.  相似文献   

11.
Mulugeta M  Megersa N 《Talanta》2004,64(1):101-108
Supported liquid membrane (SLM) method for preconcentration and enrichment of the two bipyridilium herbicides, namely diquat and paraquat, from environmental water samples has been developed. The permanently charged cationic herbicides were extracted from a flowing aqueous solution to a stagnant acidic acceptor solution across a liquid membrane containing 40% (v/v) di-(2-ethylhexyl) phosphoric acid dissolved in di-n-hexyl ether. The mass transfer of analytes is driven by the counter-coupled transport of hydrogen ions from the acceptor to the donor phase. The efficiency of the extraction process depends on the donor solution pH, the amount of the mobile carrier added to the liquid membrane and the concentration of the counter ion in the acceptor solution. The applicability of the method for extraction of these quaternary ammonium herbicides from environmental waters was also investigated by spiking analyte sample solutions in river water. With 24 h sample enrichment concentrations of diquat and paraquat down to ca. 10 ng/L could be detected in environmental waters.  相似文献   

12.
Takino M  Daishima S  Nakahara T 《The Analyst》2001,126(5):602-608
A method for the determination of six chlorinated phenoxy acid herbicides in river water was developed using in-tube solid-phase microextraction (SPME) followed by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS). In-tube SPME is an extraction technique for organic compounds in aqueous samples, in which analytes are extracted from a sample directly into an open tubular capillary by repeated draw/eject cycles of the sample solution. Simple mass spectra with strong signals corresponding to [M-H]- and [M-RCOOH]- were observed for all herbicides tested in this study. The best separation of these compounds was obtained with a C18 column using linear gradient elution with a mobile phase of acetonitrile-water containing 5 mmol l-1 dibutylamine acetate (DBA). To optimize the extraction of herbicides, several in-tube SPME parameters were examined. The optimum extraction conditions were 25 draw/eject cycles of 30 microliters of sample in 0.2% formic acid (pH 2) at a flow rate of 200 microliters min-1 using a DB-WAX capillary. The herbicides extracted by the capillary were easily desorbed by 10 microliters acetonitrile. Using in-tube SPME-LC/ESI-MS with time-scheduled selected ion monitoring, the calibration curves of herbicides were linear in the range 0.05-50 ng ml-1 with correlation coefficients above 0.999. This method was successfully applied to the analysis of river water samples without interference peaks. The limit of quantification was in the range 0.02-0.06 ng ml-1 and the limit of detection (S/N = 3) was in the range 0.005-0.03 ng ml-1. The repeatability and reproducibility were in the range 2.5-4.1% and 6.2-9.1%, respectively.  相似文献   

13.
A porous polypropylene hollow fiber membrane (HFM)-protected solid-phase microextraction (HFM-SPME) procedure in conjunction with gas chromatography/mass spectrometric analysis for use in the determination of triazine herbicides in bovine milk samples is described. A 65-microm polydimethylsiloxane-divinylbenzne (PDMS-DVB) SPME fiber was protected by an HFM. HFM-SPME experimental parameters such as fiber type, extraction time, extraction temperature and salt concentration were investigated and optimized. The relative standard deviations for the reproducibility of the optimized HFM-SPME method varied from 4.30 to 12.37%. The correlation coefficients of the calibration curves were between 0.9799 and 0.9965 across a concentration range of 0-200 microg l(-1). The method detection limits for triazines in bovine milk were in the range of 0.003-0.013 microg l(-1) and limits of quantification were in the range of 0.006-0.021 microg l(-1). The suitability of HFM-SPME was extended to the analysis of the herbicides in sewage sludge samples. The results demonstrate that HFM-SPME was an efficient pretreatment and enrichment procedure for complex matrices.  相似文献   

14.
开发了一种高效、 环保的基于酸性离子液体填充注射器的泡腾辅助微萃取法, 用于测定果汁样品中三嗪类除草剂. 萃取分散采用酸性离子液体[C4mim][HSO4], 它对三嗪类除草剂具有较高的溶解度, 其酸性可与碳酸盐反应产生二氧化碳, 从而加速萃取过程. 该实验的提取和分离步骤在注射器中完成, 整个预处理过程完全不需要任何设备辅助. 对碳酸氢钠用量、 酸性离子液体用量、 盐添加量及洗脱溶剂体积等影响萃取效率的实验条件进行了优化. 在最佳条件下, 三嗪类除草剂浓度在1~200 ng/mL范围内获得了良好的线性关系, 相关系数大于0.9984; 检出限(LOD)和定量限(LOQ)分别为0.06~0.18和0.21~0.61 ng/mL, 日间及日内精密度低于8.3%. 实验结果表明, 该方法可用于果汁样品中三嗪类除草剂的测定.  相似文献   

15.
Lippolis MT  Concialini V 《Talanta》1988,35(3):235-236
A differential pulse polarographic method, using the dropping mercury electrode for the determination of the herbicides atrazine, prometrine and simazine is described. The optimum pH is 2. The limit of detection is 8 x 10(-8)M, corresponding to about 15 mu/l. The electrochemical behaviour of the compounds on glassy-carbon and mercury-coated glassy-carbon electrodes was also examined with a view to its use for electrochemical detection of the herbicides after their separation by HPLC.  相似文献   

16.
以Na4EDTA为络合剂,以五氟苄基溴为衍生试剂,采用快速溶剂萃取仪萃取,同时实现土壤酸性除草剂的络合萃取在线衍生,并以气相色谱-质谱(NCI源)进行检测。对络合条件、衍生条件、萃取条件、离子源选择进行了优化。方法的回收率为75%~95%、相对标准偏差为6.7%~13%、检测限2.8~8.4μg/Kg。  相似文献   

17.
A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 ml of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination. For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the 3-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples.  相似文献   

18.
There is increasing interest in and demand for simultaneously monitoring pesticides as well as related degradation products (DPs) in natural waters, as the latter compounds can be even more toxic than the former ones. A method for determining parts per trillion levels of phenylurea herbicides and their DPs, that is their dealkylated forms and aromatic amines, is described. This method is based on solid-phase extraction with a Carbograph 4 cartridge followed by liquid chromatography (LC) with electrospray (ES) mass spectrometric detection. A study aimed at optimizing the response of the ES-MS detector for very weakly basic chloroanilines was conducted. Results showed that ion signal intensities of the above species were dependent on the composition of the LC mobile phase to an astonishing degree. At concentration levels of a few hundred ng/l, laboratory experiments showed that the aromatic amines considered here were mostly associated to dissolved humic acids (HAs) by both reversible and irreversible bindings. The addition of a reducing agent, i.e., NaBH4, succeeded in liberating that fraction of aromatic amines, which being reversibly bound to quinoidal structures of HAs are bioavailable. Analyte recoveries were better than 85% on extraction from 4 l of drinking water (spike level, 25 ng/l), 2 l of ground water (spike level, 50 ng/l) and 0.5 l of river water (spike level, 200 ng/l). Relative standard deviations ranged between 4.6 and 20% for drinking water, 4.3 and 15% for ground water, 5.9 and 13% for river water. Method detection limits calculated for drinking water, groundwater and surface water were between 3 and 11, 6 and 21, 36 and 75 ng/l, respectively.  相似文献   

19.
A quantitative in situ t.l.c. method for the determination of chlorophenoxy acid herbicides and their salts in waters is described. The detection limit (1 ppb) is similar to that obtainable by gas chromatography, but no derivatization is needed. Silica gel G plates are pre-impregnated with a sensitized silver nitrate reagent, and the spots are scanned with a densitometer after u.v. irradiation. Linear calibration graphs were obtained in the range 100–1000 ng for most of the herbicides studied. Preliminary cleanup methods are discussed.  相似文献   

20.
This paper describes a novel, rapid, and sensitive analytical method for monitoring four triazolone herbicides in cereals (wheat, rice, corn, and soybean), using a quick, easy, cheap, effective, rugged, and safe sample extraction procedure followed by ultrahigh performance liquid chromatography coupled with tandem mass spectrometry. The four triazolone herbicides (amicarbazone, carfentrazone‐ethyl, sulfentrazone, and thiencarbazone‐methyl) were extracted using acidified acetonitrile (containing 1% v/v formic acid) and subsequently purified with octadecylsilane (C18) prior to sample analysis. Ultrahigh performance liquid chromatography coupled with tandem mass spectrometry was operated in positive and negative ionization switching mode. Amicarbazone and carfentrazone‐ethyl were detected in the positive mode (ESI+), while sulfentrazone and thiencarbazone‐methyl were detected in the negative mode (ESI?). All compounds were successfully separated in less than 3.0 min. Further optimization achieved desired recoveries ranging from 74.5 to 102.1% for all analytes with relative standard deviation values ≤17.2% in all tested matrices at three levels (10, 100, and 500 μg/kg). The limits of detection for all compounds were ≤2.3 μg/kg, and the limits of quantitation did not exceed 7.1 μg/kg. The developed method showed excellent linearity (R2 ≥ 0.994) and was proven to be highly efficient and reliable for the routine monitoring of triazolone herbicides in cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号