首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal crystallization kinetics in the melting of poly(ethylene oxide) (PEO) were investigated as a function of the shear rate and crystallization temperature by optical microscopy. The radial growth rates of the spherulites are described by a kinetics equation including shearing and relaxation combined effects and the free energy for the formation of a secondary crystal nucleus. The free‐energy difference between the liquid and crystalline phases increased slightly with rising shearing rates. The experimental findings showed that the influence of the relaxation of PEO, which is related to the shear‐induced orientation and stretch in a PEO melt, on the rate of crystallization predominated over the influence of the shearing. This indicated that the relaxation of PEO should be more important so that the growth rates increase with shearing, but it was nearly independent of the shear rate within the measured experimental range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 656–665, 2004  相似文献   

2.
Rheology and viscoelastic behavior of polystyrene (PS)/silica microcomposites and nanocomposites were studied. The apparent viscosity, transient shear stress growth after startup shear flow and stress relaxation after cessation of flow at various shear rates, the complex dynamic viscosity, the storage and loss moduli at small and large strain amplitudes and various frequencies were performed. The effect of size, shape and volume concentration of silica was discussed. The maximum volume concentration, corresponding to the concentration at which the relative viscosity of mixtures goes to infinity, with respect to the hydrodynamic contribution of the particles and to polymer-filler interactions was obtained. The difference between the yield stress and residual stress is shown. The domain of equivalence between the apparent viscosity as a function of the shear rate in steady state flow and the complex dynamic viscosity as a function of the strain rate amplitude in highly nonlinear region of oscillatory flow was established. The viscoelastic behavior was interpreted based on the morphology of microcomposites and nanocomposites observed by SEM.  相似文献   

3.
Foams produced from surfactant solutions containing micelles of the anionic surfactant sodium polyoxyethylene-2 sulfate and counterions of different valence (aluminium, calcium or sodium) are investigated. For this purpose an experimental setup consisting of a glass column and units for detection of pressure, flow and frequency is constructed. Blowing gas bubbles in the surfactant solution at a constant gas pressure produces the foam. Simultaneous monitoring of the bubble volume and frequency relates the foam growth rate to the dynamic surface tension of the surfactant solution. The foam growth rate plotted versus the gas flow rate exhibits a break point at about 80 mL/min, attributed to the transition from regime of bubbles (at lower flow rates - monodisperse foam) to jet regime (at higher flow rates - polydisperse foam). Due to the high surfactant concentration, the foam is stable and its height is linearly increasing with the time. Two types of experiments are carried out. (i) At a constant counterion concentration and variable surfactant concentration, the rate of foam growth increases initially with increasing of the surfactant concentration reaching a plateau at higher concentrations. The foams of pure surfactant grow always slower than the foams with added aluminium ions. (ii) At a constant surfactant concentration and variable counterion concentration, the rate of foam growth exhibits a maximum. It corresponds to number of aggregated surfactant monomers nearly equal to the number of charges provided by the counterions, for example when one aluminium ion binds three surfactant monomers in a micelle. The point of maximum coincides with the transition from small spherical micelles to large cylindrical ones. This transition affects also the micelle lifetime, which is related to the ability of releasing monomers by a micelle in order to supply the bubble surface with surfactant. In support to this hypothesis, the maximum foam growth is found corresponding to lower dynamic surface tension allowing the generation of a large number smaller in size bubbles. The results for the foam growth agree in some extent with the data from independent measurements on the liquid drainage from wet foams.  相似文献   

4.
Using Monte Carlo simulation techniques, we calculate the phase diagram for a square-shoulder square-well potential in two dimensions that has been previously shown to exhibit liquid anomalies consistent with a metastable liquid-liquid critical point. We consider the liquid, gas, and five crystal phases, and find that all the melting lines are first order, despite a small range of metastability. One melting line exhibits a temperature maximum, as well as a pressure maximum that implies inverse melting over a small range in pressure.  相似文献   

5.
The crystal growth of dense and almost monodisperse colloids has been investigated during recent years, but less is known about the melting behavior. The current study thus focuses on this topic. Monodisperse hard spheres were found to crystallize for certain concentrations (49-58 vol %), after sufficiently long times. The characteristics of the crystal growth change when the colloidal particles are polydisperse. Finally, when the size distribution function of the particles is broad enough, the crystallization no longer took place. Dense oil-in-water emulsions with polydispersities of around 10% were successfully produced, and in a first approximation, these emulsions behaved like hard spheres. The polydispersity of the emulsions was sufficiently high to avoid crystallization in equilibrium but low enough to induce a disorder-to-order transition under shear. The formed crystals started to melt once the shear was discontinued. The melting behavior of these "oil droplet crystals" was investigated by means of time-resolved static light scattering experiments, and it was found that crystallization could be induced in a concentration regime between 46 and approximately 74 vol %. The melting behavior of these crystals depended strongly on the concentration. The typical melting times ranged from a few seconds to several hours or days when the concentration was increased. It was speculated that this phenomenon could be explained by the strong dependence of the mobility of the oil droplets on the volume fraction, as verified by dynamic light scattering experiments on oil-in-water emulsions in a similar concentration regime.  相似文献   

6.
The shear thickening behavior and the transition to shear thinning are examined in dilute cetyltrimethylammonium tosylate (CTAT) micellar solutions as a function of surfactant concentration and ionic strength using electrolytes with different counterion valence. Newtonian behavior at low shear rates, followed by shear thickening and shear thinning at higher shear rates, are observed at low and intermediate surfactant and electrolyte concentrations. Shear thickening diminishes with increasing surfactant concentration and ionic strength. At higher surfactant or electrolyte concentration, only a Newtonian region followed by shear thinning is detected. A generalized flow diagram indicates two controlling regimes: one in which electrostatic screening dominates and induces micellar growth, and another, at higher electrolyte and surfactant concentrations, where chemical equilibrium among electrolyte and surfactant counterions controls the rheological behavior by modifying micellar breaking and reforming. Analysis of the shear thickening behavior reveals that not only a critical shear rate is required for shear thickening, but also a critical deformation, which appears to be unique for all systems examined, within experimental error. Moreover, a superposition of the critical shear rate for shear thickening with surfactant and electrolyte concentration is reported.  相似文献   

7.
In the presented model elements of polymer melt rheology and polymer crystallization kinetics are combined. In particular, the proneness of the melt to the special type of crystallization which is characteristic for shear treatment is supposed to emerge only gradually during shear flow. Following Avrami's early ideas on crystal growth, an induction time is introduced. In principle, the model can be applied to any flow and temperature history. The special case of isothermal flow at constant shear rate is covered in greater detail: A favorable comparison is made with experimental results, as published by Lagasse and Maxwell [10].Dedicated to Prof. J. Meissner on the occasion for his 60th birthday.  相似文献   

8.
9.
In this paper a new molecular dynamics simulation methodology to investigate steady-state heterogeneous crystal growth from a supercooled liquid is presented. The method is tested on pure component systems such as Lennard-Jonesium and water/ice, as well as multicomponent systems such as methane hydrate crystals. The setup uses periodicity in all three directions and two interfaces; at one interface, crystallization occurs, while at the other, melting is enforced by locally heating the crystal only near that interface. Steady-state conditions are achieved when the crystal is melted at the same rate as the growth occurs. A self-adaptive scheme that automatically modifies the rate of melting to match the rate of growth, crucial for establishing steady-state conditions, is described. In contrast with the recently developed method of Razul et al. [Mol. Phys. 103, 1929 (2005)], where the rates of growth (melting) were constant and the temperatures determined, the present approach fixes the supercooling temperature at the growing interface and identifies the corresponding steady-state crystal growth rate that corresponds to the thermodynamic force provided. The static properties of the interface (e.g., the interfacial widths) and the kinetics of the crystal growth are found to reproduce well previous findings. The importance of establishing steady-state conditions in such investigations is also briefly discussed.  相似文献   

10.
Poly(vinylidene fluoride) film formation with electrospray deposition has been studied with support of a droplet evaporation model. The input parameters of the model consist basically of the solvent, the solute concentration, the flow rate, and the solution conductivity. The model provides the droplet size, the solute concentration, the droplet velocity, and the shear stress of the droplet at impact as a function of the distance between the nozzle and the substrate. With some additional experimental information such as the size change of the film with spray distance and the viscosity of the solution, the growth rate of the film and the shear rate of the droplet at impact can be determined. Growth rate is shown to define distinct regimes of film formation. In those regimes, only a single factor or a limited number of factors controls the film morphology. The most important factors include the shear rate and the surface energy. It is found that at a specific range of growth rates only the shear rate determines the morphology of the polymer film. Growth rate, as the defining quantity of film morphology, is not limited to polymer solutions. Therefore, the growth rate, in combination with the control factors mentioned above, functions as a general framework through which understanding and control of film formation with electrospray deposition can be improved.  相似文献   

11.
疏水缔合作用;羧甲基纤维素;疏水化两性离子纤维素接枝共聚物/疏水化聚丙烯酰胺复合溶液的粘性行为  相似文献   

12.
Although atomic force microscopy (AFM) has emerged as the preeminent experimental tool for real-time in situ measurements of crystal growth processes in solution, relatively little is known about the mass transfer limitations that may impact these measurements. We present a continuum analysis of flow and mass transfer in an atomic force microscope fluid cell during crystal growth, using data acquired from calcium oxalate monohydrate (COM) crystal growth measurements as a comparison. Steady-state flows and solute concentration fields are computed using a three-dimensional, finite element method implemented on a parallel supercomputer. Steady-state flow results are compared with flow visualization experiments to validate the model. Computations of the flow field demonstrate how nonlinear momentum transport alters the spatial structure of the flow with increasing flow volume, altering mass transport conditions near the AFM cantilever and tip. The simulations demonstrate that the combination of solute depletion from crystal growth and mass transfer resistance lowers the solute concentration in the region between the tip and the crystal compared with the solute concentration at the inlet of the AFM cell. For example, using experimentally measured growth rates for COM, the solute concentration in this region is 3.1% lower than the inlet value because the solute consumed by crystal growth beneath the AFM tip cannot be replenished fully due to mass transport limitations. The simulations also reveal that increasing the flow rate through the cell does not affect this difference significantly because of the inherent shielding by the AFM tip in proximity with the crystal surface. Models such as the one presented here, used in conjunction with AFM measurements, promise more precise interpretations of measurement data.  相似文献   

13.
Extensive data on the viscosity, covering 15 orders of magnitude, and crystal growth rate, covering seven orders of magnitude, of liquid diopside (CaO.MgO.2SiO(2)) were collected in a wide range of undercoolings from 1.10T(g) to 0.99T(m) (T(g) is the glass transition temperature and T(m) the melting point). The raw growth rate data were corrected for the increased interfacial temperature produced by the heat released during crystallization. A detailed analysis confirms that growth mediated by screw dislocations reasonably explain the experimental data in these wide ranges of temperatures and growth rates. Effective diffusion coefficients were calculated from crystal growth rates and from viscosity, and were then compared with measured self-diffusion coefficients of silicon and oxygen in diopside melt. The results show that oxygen and silicon control the diffusion dynamics involved in crystal growth and viscous flow. This study not only unveils the transport mechanism in this complex liquid, but also validates the use of viscosity (through the Stokes-Einstein or the Eyring equations) to account for the kinetic term of the crystal growth expression in a wide range of temperatures.  相似文献   

14.
The influence of ionic environment on the rheological properties of aqueous cetyltrimethylammonium p-toluene sulfonate (CTAT) solutions has been studied under three different flow fields: simple shear, opposed-jets flow and porous media flow. Emphasis was placed in the experiments on a range of CTAT concentration in which wormlike micelles were formed. It is known that these solutions exhibit shear thickening in the semi-dilute regime, which has been explained in terms of the formation of shear-induced, cooperative structures involving wormlike micelles. In simple shear flow, the zero shear viscosity exhibits first an increase with salt addition followed by a decrease, while the critical shear rate for shear thickening increases sharply at low salt contents and tends to saturate at relatively high ionic strengths. The results are explained in terms of a competition between micellar growth induced by salt addition and changes in micellar flexibility caused by ionic screening effects. Dynamic light scattering results indicate that micelles grow rapidly upon salt addition but eventually achieve a constant size under static conditions. These observations suggest that the wormlike micelles continuously grow with salt addition, but, as they become more flexible due to electrostatic screening, the wormlike coils tend to adopt a more compact conformation. The trends observed in the apparent viscosities measured in porous media flows seem to confirm these hypotheses-but viscosity increases in the shear thickening region-and are magnified by micelle deformation induced by the elongational nature of the local flow in the pores. In opposed-jets flow, the solutions have a behavior that is close to Newtonian, which suggests that the range of strain rates employed makes the flow strong enough to destroy or prevent the formation of cooperative micellar structures.  相似文献   

15.
The influence of shear on non-isothermal crystallization of commercial poly(butylene adipate-co-terephthalate) (PBAT) was investigated. PBAT melt was sheared at 130 and 150 °C at rates of 10–100/s, and then cooled. The crystallization was followed by a light depolarization technique, whereas the crystallized specimens were analyzed by DSC, 2D-SAXS, 2D-WAXS, PLM and SALS. Shear flow shifted crystallization to higher temperature, and the effect was augmented by lower temperature of shearing as well as by higher shear rate and strain. Crystallization peak rate temperature of PBAT, sheared at 130 °C for 5 min at 100/s, increased by up to 12 °C. However, no evidence of crystal orientation due to shear was found, indicating that the shear induced the point-like nucleation. Only a small increase of melting peak temperatures, by up to 2–5 °C, was observed for the specimens sheared at the highest rates (≥50/s).  相似文献   

16.
Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.  相似文献   

17.
通过自主设计的动态保压注塑成型装置研究剪切应力场下聚丙烯(PP)熔体在近熔点处冷却结晶的晶体结构.用扫描电子显微镜(SEM)、示差扫描量热法(DSC)和广角X射线衍射(WAXD)分析了PP试样在近熔点处冷却后从表层到剪切层的结晶结构的变化.SEM研究表明,与传统注塑成型样品(SL)和剪切力场中高熔体温度下冷却得到的试样(DH)相比,近熔点附近冷却得到的PP试样(DL)从表层到剪切层的结晶结构和形态有明显变化.DL从表层到剪切层均生成了尺寸较大的取向结晶结构,无明显的串晶产生.DSC研究表明,与SL和DH相比,DL剪切层无脊纤维晶熔融峰且晶片熔融温度较高,证明其样品内部晶片尺寸较大.WAXD进一步研究显示,DL内部主要晶面(110,040和130)的结晶尺寸与SL和DH相比并没有发生明显改变.  相似文献   

18.
溶液电导率法对碳酸钙结晶动力学的研究   总被引:12,自引:0,他引:12  
溶液电导率法对碳酸钙结晶动力学的研究;结垢;电导率  相似文献   

19.
The rheological behavior of a mixture of two liquid-crystal polymers, hydroxypropyl cellulose and ethyl cellulose, in acetone solution is studied. The total polymer concentration in the solvent is held constant (40%) as the ratio of the two polymers is varied. The mixtures are anisotropic, isotropic, or biphasic (isotropic/anisotropic), depending on the concentration. Curves of viscosity vs shear rate for all the mixtures studied show three regions of viscosity, as described by Onogi and Asada for liquid-crystal polymers. The viscosity as a function of the weight ratio of the two polymers at constant shear rate exhibits deviations from additivity of viscosities of the two components at all concentrations. In mixtures of two polymers in the melt, deviations are also observed; the negative ones are attributed to phase separation and the positive ones to homogenous mixing (comparison with the phase diagram). All the mixtures studied (anisotropic, isotropic, or biphasic), show ranges of shear rates where the first normal-stress difference is negative, as is generally observed for anisotropic liquid-crystal polymers. It is concluded that the isotropic solutions become anisotropic under shear, as they are not far from the critical concentration. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The effect of shear rates on the transcrystallization of polypropylene (PP) on the polytetrafluoroethylene (PTFE) fibers has been quantitatively investigated using a polarized optical microscope equipped with a hot stage and a tensile testing machine. The PTFE fibers were pulled at different rates, from 0.17 to 8.33 μm/s, to induce a range of shear rates, about 0.02 to 1.16 1/s, in the PP melt adjacent to the fiber. The induction time, nucleation rate, and saturated nucleation density at the fiber surface were determined at various crystallization temperatures. It was found that both the nucleation rate and the saturated nucleation density increase with increasing shear rates. However, the induction time is significantly reduced. Based on the theory of heterogeneous nucleation, the interfacial free energy difference functions Δσ;TCL of PP on PTFE fibers at different levels of shear rates were determined and compared with that obtained from crystallization under quiescent conditions. Results showed that the magnitude of ΔσTCL decreased to be about one-third of that for the quiescent crystallization, when a shear rate of 1.16 1/s was applied. The application of a shear stress to the supercooled PP melt by fiber pulling leads to enhance the development of transcrystallinity. Moreover, both the thickness and the crystal growth rate of transcrystalline layers were found to increase with the increasing rate of fiber pulling, especially at low crystallization temperatures where regime III prevails (see text). Surface morphology of PTFE fibers was revealed using a scanning electron microscope and an atomic force microscope. It is argued that the presence of fibrillar-type features at the fiber surface is the main factor responsible for the development of transcrystallinity. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1361–1370, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号