首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a device for two-stage frequency upconversion of single-photon-level signals in the 1.55 μm telecom band to the green spectral region with low excess noise, suitable for detection by low-timing-jitter silicon single-photon avalanche photodiodes (APDs). We achieve a net conversion efficiency of 87% and a system timing jitter below 70 ps FWHM, dominated by the jitter of the APD. Modifications of our device are suitable for downconversion of single photons from visible-wavelength quantum emitters into the telecom band.  相似文献   

2.
This Letter introduces a trigger-controlled Geiger-mode avalanche photodiode(GM-APD). A hierarchical lookback-upon tree recurrence method is given to predict the performance of trigger-controlled GM-APDs under different trigger-count upper limits. In addition, the normalized detection probability is defined to evaluate the detection performance of trigger-controlled GM-APDs in typical weak optical signal detection(impulse noise and continuous noise situations). Theoretical analyses show that the trigger-controlled GM-APD improves the detection performance of GM-APDs in weak optical signal detection via the optimization of the trigger-count upper limit, compared with single-trigger and multi-trigger GM-APDs.  相似文献   

3.
Qin G  Suzuki T  Ohishi Y 《Optics letters》2008,33(3):249-251
We report what we believe to be the first demonstration of stable gain-switched 845 nm pulse generation (Er(3+): (4)S(3/2)->(4)I(13/2) transition) by a weak modulated 1550 nm seed laser, from an Er(3+)-doped fluoride fiber pumped by a cw 974 nm laser diode. When the pump power of the 974 nm laser diode is set to a certain value, the injection of a weak (<1 mW) modulated 1550 nm seed laser into the 845 nm lasing cavity can depopulate the lower state (4)I(13/2) of 845 nm lasing, switch the gain to regulate the conventionally chaotic spiking, and generate stable synchronous 845 nm pulse trains with the repetition rate up to 100 kHz.  相似文献   

4.
Solar-blind ultraviolet detection is of great importance in astronomy and industrial and military applications.Here, we report enhanced solar-blind ultraviolet single-photon detection by a normal silicon avalanche photodiode(Si APD) single-photon detector with a specially designed photon-collecting device. By re-focusing the reflected photon from the Si chip surface on the detection area by the aluminum-coated hemisphere, the detection efficiency of the Si APD at 280 nm can be improved to 4.62%. This system has the potential for high-efficiency photon detection in the solar-blind ultraviolet regime with low noise.  相似文献   

5.
Electrically contacted gold-nanocluster arrays formed within electromigration-induced break junctions exhibit bright, field-dependent electroluminescence in the near infrared (650-800 nm). Intensity autocorrelation of spatially isolated individual nanocluster emission driven at high electrical frequency (f(ac)= approximately 200 MHz) reveals antibunched electroluminescence at room temperature. These results demonstrate the single quantum nature of several-atom gold molecules and suggest their use as room-temperature electrically driven single-photon sources.  相似文献   

6.
We show that the group velocities of light pulses can be decelerated dramatically by the use of a dispersive phase-coupling effect through a wave mixing process. We have observed experimentally such a phase-coupling-induced ultraslow light propagation with a group velocity as low as 0.05 m/s in a photorefractive Bi12SiO20 crystal at room temperature. Moreover, the ultraslow light is amplified in the Bi12SiO20 crystal because of the unidirectional energy transfer from a coupling beam to the ultraslow light. This technique to produce ultraslow light propagation is valid for all nonlinear wave mixing processes with a dispersive phase-coupling effect.  相似文献   

7.
Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm   总被引:12,自引:0,他引:12  
Tomita A  Nakamura K 《Optics letters》2002,27(20):1827-1829
A photon detector that combines two avalanche photodiodes (APDs) has been demonstrated for quantum-bit discrimination at 1550 nm. Spikes accompanied by signals in a gated mode were canceled by balanced output from the two APDs. The spike cancellation enabled one to reduce the threshold in the discriminators and thus the gate pulse voltage. The dark count probability and afterpulse probability were reduced to 7x10(-7) and 7x10(-4) , respectively, without affecting the detection efficiency (11%) at 178 K.  相似文献   

8.
The present paper proposes a novel design for achieving single-polarization single-mode (SPSM) operation at 1550 nm in photonic crystal fiber (PCF), using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. Simulations show that single-polarization operation within broad wavelength range can be easily realized with the proposed structure. The wideband SPSM operation features, the low confinement losses, and the small effective mode area are the main advantages of the proposed PCF structure. A SPSM-PCF with confinement loss less than 0.1 dB/km within wavelength range from 1370 to 1610 nm and effective mode area about 4.7 μm2 at 1550 nm is numerically demonstrated.  相似文献   

9.
We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.  相似文献   

10.
The rapid development of superconducting nanowire single-photon detectors over the past decade has led to numerous advances in quantum information technology. The record for the best system detection efficiency at an incident photon wavelength of 1550 nm is 93%. This performance was attained from a superconducting nanowire single-photon detector made of amorphous WSi; such detectors are usually operated at sub-Kelvin temperatures. In this study, we first demonstrate superconducting nanowire single-photon detectors made of polycrystalline NbN with system detection efficiency of 90.2% for 1550-nm-wavelength photons at 2.1 K, accessible with a compact cryocooler. The system detection efficiency saturated at 92.1% when the temperature was lowered to 1.8 K. We expect the results lighten the practical and high performance superconducting nanowire single-photon detectors to quantum information and other high-end applications.  相似文献   

11.
Design and characteristics of the guardring-free planar InGaAs/InP avalanche photodiode are considered based on 2D numerical simulation. The device incorporates n-charge sheet and p-charge sheet, which spatially separates multiplication layer and p+-region. Simulation results of 2D electric field and impact ionization rate profile, current-voltage, capacitance-voltage and bandwidth-gain characteristics are discussed.  相似文献   

12.
介绍了在高于253 K的温度下,实现红外单光子探测的实验.选用拉通电压较高的雪崩光电二极管(APD),设计制作了非线性限流技术保护高温工作的APD,利用半导体热电制冷器,在256.8K的温度下,实现了1550 nm波段的单光子探测实验.单光子探测的暗记数率为3.13×10-5 ns,在220 kHz/s的单光子脉冲速率下,探测效率为2.08%.  相似文献   

13.
1550 nm单模光纤中的量子密钥分配   总被引:2,自引:0,他引:2  
从实验中实现了红外波段的远程量子密钥分配。系统采用双不等臂M-Z干涉仪相位编码方式,工作波长为1550nm。通过分析量子密钥分配系统传输距离与误码率之间相互关系,给出了理论上理想不等臂M-Z系统与实际系统的最低误码率与传输距离间的关系,以及系统实测传输距离与误码率的关系。实验结果显示,本密钥分配系统已非常接近理想实验系统的性能。  相似文献   

14.
In this paper, we report the sono-synthesis of reduced graphene oxide (rGO) using polyethyleneimine (PEI), and its performance for ammonia vapour detection at room temperature. Graphene oxide (GO) and reduced graphene oxide (rGO) were prepared by sonication method by using low-frequency ultrasound under ambient condition and films were deposited by Doctor Blade method. The rGO, which has vapour accessible structure showed a good sensing response with a minimum detection limit of 1 ppm and the detection range from 1 ppm to 100 ppm. The sensing response was found to be 2% at 1 ppm and 34% at 100 ppm of ammonia and the developed sensor operated at room temperature. The sensor displays a response time of 6 s and a recovery time of 45 s towards 100 ppm of ammonia vapour. The source for the highly sensitive, selective and stable detection of ammonia with negligible interference from other vapours is discussed and reported. We believe reduced graphene oxide (rGO) could potentially be used to manufacture a new generation of low-power portable ammonia sensors.  相似文献   

15.
微弱光信号检测电路的实现   总被引:3,自引:1,他引:3  
为将微弱光信号有效地转换为电信号以方便后级电路处理,设计了微弱光信号检测电路。电路由光电转换和前置放大两部分组成。光电转换电路采用低输入偏置电流运算放大器AD 549实现;前置放大电路使用对称三极管组成的对数比率放大电路实现,并在同等条件下与集成电路LOG 100组成的前置放大电路相比较。实际测量表明,该放大电路设计可有效放大低于1 nW的微弱输入信号,同时对噪声也有很强的抑制作用,而由LOG 100组成的电路对噪声的抑制能力明显衰减。  相似文献   

16.
We have observed slow light propagation with a group velocity as low as 57.5+/-0.5 m/s at room temperature in a ruby crystal. A quantum coherence effect, coherent population oscillations, produces a very narrow spectral "hole" in the homogeneously broadened absorption profile of ruby. The resulting rapid spectral variation of the refractive index leads to a large value of the group index. We observe slow light propagation both for Gaussian-shaped light pulses and for amplitude modulated optical beams in a system that is much simpler than those previously used for generating slow light.  相似文献   

17.
In this Letter, a new method for avalanche photodiode characterization, based on the spectral analysis of the photocurrent produced during an avalanche, is proposed. The theory is developed, and an experimental characterization of an avalanche photodiode working in the Geiger mode with CW laser is performed.  相似文献   

18.
《Physics letters. A》2014,378(26-27):1820-1824
In an ad hoc suboptimal detector, the benefits of non-Gaussian noise to narrowband weak signal detection are demonstrated. Particularly, for a noise envelope with a Rice distribution, we can improve the detector performance by tuning threshold parameter but keeping noise level, or increasing the noise level for a fixed threshold. It is verified that, under certain circumstances, the optimal detection probability achieved by tuning noise level is superior to that obtained by optimizing the detector threshold.  相似文献   

19.
为了确保电力系统能够安全稳定的运行,实时检测故障中的微弱信号。通过噪声干扰情况下微弱信号的不同变化进行研究,得到了一种微弱信号的DUFFING混沌检测模型。系统发生故障时会产生相应的微弱信号,运用DUFFING混沌振子法分析不同情况下微弱信号的时域波形和相平面轨迹变化规律,并建立数学检测模型,对其幅值进行混沌检测仿真。结果表明,当r=0.8264V,w=1rad/s时将白噪声和微弱正弦信号同时加入后,此时,混沌状态、大尺度周期状态的相平面运行轨迹依然在进行有规律的运行,可以清晰的观察出需要检测的微弱信号。在强噪声存在于系统中时,该方法明显克服了噪声对信号稳定性的干扰,能精确有效检测微弱信号。系统在应对不同工作环境、仪器设备老化等情况时,提高了检测效率,保证系统的稳定运行。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号