首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a one‐pot annulation reaction of monocarba‐closo‐dodecaborate with cyclic diaryliodonium salts to afford biaryl‐fused derivatives. Aryl functionalities are introduced at both the 1‐carbon and unreactive ortho‐boron vertices of the “σ‐aromatic” carborane cage without the need for pre‐functionalization. DFT calculations revealed that the palladium‐catalyzed C?B bond‐formation step in this process proceeds through a concerted metalation–deprotonation (CMD)‐type pathway for the B?H bond disconnection on the aromatic cage, though such bonds are generally regarded as hydridic.  相似文献   

2.
A new and efficient synthesis of 8H‐benzo[e]phenanthro[1,10‐bc]silines from 2‐((2‐(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C?H/C?H coupling through a new mode of 1,4‐palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

3.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

4.
A direct ortho‐Csp2‐H acylmethylation of 2‐aryl‐2,3‐dihydrophthalazine‐1,4‐diones with α‐carbonyl sulfoxonium ylides is achieved through a RuII‐catalyzed C?H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl‐, heteroaryl‐, and alkyl‐substituted α‐carbonyl sulfoxonium ylides. Thereafter, 2‐(ortho‐acylmethylaryl)‐2,3‐dihydrophthalazine‐1,4‐diones were used as potential starting materials for the expeditious synthesis of 6‐arylphthalazino[2,3‐a]cinnoline‐8,13‐diones and 5‐acyl‐5,6‐dihydrophthalazino[2,3‐a]cinnoline‐8,13‐diones under Lawesson's reagent and BF3?OEt2 mediated conditions, respectively. Of these, the BF3?OEt2‐mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C?C and C?N bond formations.  相似文献   

5.
An Rh‐catalyzed selective C?H bond activation of diaryl‐substituted anilides is described. In an attempt to achieve C?H activation of C‐aryl rings, we unexpectedly obtained an N‐aryl ring product under non‐coordinating anion conditions, whereas the C‐aryl ring product was obtained in the absence of a non‐coordinating anion. This methodology has proved to be an excellent means of tuning and adjusting selective C?H bond activation of C‐aryl and N‐aryl rings. The approach has been rationalized by mechanistic studies and theoretical calculations. In addition, it has been found and verified that the catalytic activity of the rhodium catalyst is obviously improved by non‐coordinating anions, which provides an efficient strategy for obtaining a highly chemoselective catalyst. Mechanistic experiments also unequivocally ruled out the possibility of a so‐called “silver effect” in this transformation involving silver.  相似文献   

6.
This contribution describes the reactivity of a zero‐valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon–carbon bond. Although η2‐coordination of the metal center to a C?C or C?C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η2‐coordination complexes are not nonproductive side‐equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation–oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C?halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η2‐coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.  相似文献   

7.
The palladium‐catalyzed arylation/alkylation of ortho‐C?H bonds in N‐benzoyl α‐amino ester derivatives is described. In such a system both the NH‐amido and the CO2R groups in the α‐amino ester moieties play a role in successful C?H activation/C?C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron‐rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95 %.  相似文献   

8.
The aniline carbamate is introduced as a new removable directing group for C?H activation. Its versatility and ability as a directing group are demonstrated by its use in the ortho‐arylation of a wide variety of aniline derivatives under palladium(II) catalysis, with symmetric diaryliodonium salts as aryl donors. The reaction differs from previously reported arylations in its selectivity and its mechanism, as elucidated by kinetic and isotopic experiments. The directing group can also be easily removed under a variety of conditions.  相似文献   

9.
Herein, we report that a series of novel palladium(II)‐NHC complexes (NHC=N‐heterocyclic carbene) were synthesized. The structures of all novel complexes were characterized by 1H NMR, 13C NMR, FT‐IR spectroscopy and elemental analysis techniques. These palladium(II)‐NHC complexes were tested as efficient catalysts in the direct C—H bond activation of benzoxazole and benzothiazole with aryl bromides in the presence of 1 mol% catalyst loading at 150 °C for 4 h. Under the given conditions, various aryl bromides were successfully applied as the arylating reagents to achieve the 2‐arylbenzoxazoles and 2‐arylbenzothiazoles in acceptable to high yields.  相似文献   

10.
Enantioselective functionalizations of unbiased methylene C(sp3)?H bonds of linear systems by metal insertion are intrinsically challenging and remain a largely unsolved problem. Herein, we report a palladium(II)‐catalyzed enantioselective arylation of unbiased methylene β‐C(sp3)?H bonds enabled by the combination of a strongly coordinating bidentate PIP auxiliary with a monodentate chiral phosphoric acid (CPA). The synergistic effect between the PIP auxiliary and the non‐C2‐symmetric CPA is crucial for effective stereocontrol. A broad range of aliphatic carboxylic acids and aryl bromides can be used, providing β‐arylated aliphatic carboxylic acid derivatives in high yields (up to 96 %) with good enantioselectivities (up to 95:5 e.r.). Notably, this reaction also represents the first palladium(II)‐catalyzed enantioselective C?H activation with less reactive and cost‐effective aryl bromides as the arylating reagents. Mechanistic studies suggest that a single CPA is involved in the stereodetermining C?H palladation step.  相似文献   

11.
The reaction of N‐alkylbenzaldimines with carbon monoxide (CO) in the presence of cobalt (Co) catalysts resulted in the formation of N‐alkylphthalimidines (Table 1). Their formation is proposed to occur by C? H activation of the aryl ring, migratory insertion of the hydride species into the benzaldimine functionality, CO coordination, and insertion into the Co? C bond, followed by reductive elimination of the N‐alkylphthalimidine and regeneration of the starting Co species (Scheme 4). Deuterium (2H)‐labeling NMR studies are consistent with this mechanism (Scheme 5).  相似文献   

12.
The stereoselective synthesis of ε‐isomers of dimethyl esters of 1,3‐diaminotruxillic acid in three steps is reported. The first step is the ortho‐palladation of (Z)‐2‐aryl‐4‐aryliden‐5(4H)‐oxazolones 1 to give dinuclear complexes 2 with bridging carboxylates. The reaction occurs through regioselective activation of the ortho‐C?H bond of the 4‐arylidene ring in carboxylic acids. The second step is the [2+2]‐photocycloaddition of the C?C exocyclic bonds of the oxazolone skeleton in 2 to afford the corresponding dinuclear ortho‐palladated cyclobutanes 3 . This key step was performed very efficiently by using LED light sources with different wavelengths (465, 525 or 625 nm) in flow microreactors. The final step involved the depalladation of 3 by hydrogenation in methanol to afford the ε‐1,3‐diaminotruxillic acid derivatives as single isomers.  相似文献   

13.
A highly efficient palladium‐catalyzed disilylation reaction of aryl halides through C?H activation has been developed for the first time. The reaction has broad substrate scope. A variety of aryl halides can be disilylated by three types of C?H activation, including C(sp2)?H, C(sp3)?H, and remote C?H activation. In particular, the reactions are also unusually efficient. The yields are essentially quantitative in many cases, even in the presence of less than 1 mol % catalyst and 1 equivalent of the silylating reagent under relatively mild conditions. The disilylated biphenyls can be converted into disiloxane‐bridged biphenyls.  相似文献   

14.
A palladium‐catalyzed three‐component reaction between N‐tosylhydrazones, 2‐iodoanilines and atmospheric pressure CO2 was developed whereby a tandem carbene migration insertion/lactamization strategy afforded 4‐aryl‐2‐quinolinones in moderate to good yields. Notably, a wide range of functional groups were tolerated in this procedure. This protocol features the simultaneous formation of four novel bonds; two C?C, one C=C and one C?N (amide), representing an efficient methodology for incorporation of CO2 into heterocycles.  相似文献   

15.
The oxidative interception of various σ‐alkyl palladium(II) intermediates with additional reagents for the difunctionalization of alkenes is an important research area. A new palladium‐catalyzed oxidative difunctionalization reaction of alkenes with α‐carbonyl alkyl bromides is described, in which the σ‐alkyl palladium(II) intermediate is generated through a Heck insertion and trapped using an aryl C(sp2)? H bond. This method can be applied to various α‐carbonyl alkyl bromides, including primary, secondary, and tertiary α‐bromoalkyl esters, ketones, and amides.  相似文献   

16.
《中国化学》2018,36(10):929-933
A new palladium‐catalyzed selective aminomethylation of conjugated 1,3‐dienes with aminals via double C—N bond activation is described. This simple method provides an effective and rapid approach for the synthesis of linear α,β‐unsaturated allylic amines with perfect regioselectivity. Mechanistic studies disclosed that one palladium catalyst cleaved two distinct C—N bond to furnish a cascade double C—N bond activation, in which an allylic 1,3‐diamine and allylic 1,2‐diamine were initially formed as key intermediates through the palladium‐catalyzed C—N bond activation of aminal and the α,β‐unsaturated allylic amine was subsequently produced via palladium‐catalyzed C—N bond activation of the allylic diamines.  相似文献   

17.
Diversification of the βcarboline skeleton has been demonstrated to assemble a βcarboline library starting from the tetrahydro‐βcarboline framework. This strategy affords feasible access to heteroaryl‐, aryl‐, alkenyl‐, or alkynyl‐substituted β‐carbolines at the C1, C3, or C8 position through three categorically different types of transition‐metal‐catalyzed C?C bond‐forming reactions, in the presence of multiple potentially reactive positions. These site‐selective functionalizations include; 1) the Cu‐catalyzed C1/C3‐selective decarboxylative C?C and C?Csp coupling of hexahydro‐βcarboline‐3‐carboxylic acid with a C?H bond of a heteroarene or terminal alkyne; 2) the chelation‐assisted Pd‐catalyzed C1/C8‐selective C?H arylation of hexahydro‐β‐carboline with aryl boron reagents; and 3) the chelation‐assisted Pd‐catalyzed C1/C3‐selective oxidative C?H/C?H cross‐coupling of βcarboline‐N‐oxide with arenes, heteroarenes, or alkenes. The saturated structural feature of the hexahydro‐βcarboline framework can increase reactivity and control site selectivity. The robustness of these approaches has been demonstrated through the synthesis of hyrtioerectine analogues and perlolyrine. We believe that these strategies could provide inspiration for late‐stage diversifications of bioactive core scaffolds.  相似文献   

18.
A palladium‐catalyzed selective C? H bond trifluoroethylation of aryl iodides has been explored. The reaction allows for the efficient synthesis of a variety of ortho‐trifluoroethyl‐substituted styrenes. Preliminary mechanistic studies indicate that the reaction might involve a key PdIV intermediate, which is generated through the rate‐determining oxidative addition of CF3CH2I to a palladacycle; the bulky nature of CF3CH2I influences the reactivity. Reductive elimination from the PdIV complex then leads to the formation of the aryl–CH2CF3 bond.  相似文献   

19.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

20.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号