首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study, involving kinetic measurements on the stopped‐flow and conventional UV/Vis timescales, ESI‐MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)3(py)3][PF6] ([ 1 ]PF6; acac=acetylacetonate, py=pyridine) with two RC?CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(μ‐S)2 moiety of [ 1 ]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition‐state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron‐withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.  相似文献   

2.
An in depth study of the reactivity of an N‐heterocyclic carbene (NHC)‐stabilized silylene monohydride with alkynes is reported. The reaction of silylene monohydride 1 , tBu3Si(H)Si←NHC, with diphenylacetylene afforded silole 2 , tBu3Si(H)Si(C4Ph4). The density functional theory (DFT) calculations for the reaction mechanism of the [2+2+1] cycloaddition revealed that the NHC played a major part stabilizing zwitterionic transition states and intermediates to assist the cyclization pathway. A significantly different outcome was observed, when silylene monohydride 1 was treated with phenylacetylene, which gave rise to supersilyl substituted 1‐alkenyl‐1‐alkynylsilane 3 , tBu3Si(H)Si(CH?CHPh)(C?CPh). Mechanistic investigations using an isotope labelling technique and DFT calculations suggest that this reaction occurs through a similar zwitterionic intermediate and subsequent hydrogen abstraction from a second molecule of phenylacetylene.  相似文献   

3.
4.
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.  相似文献   

5.
For many years it has been known that the nine water molecules in [M3Q4(H2O)9]4+ cuboidal clusters (M=Mo, W; Q=S, Se) can be replaced by entering ligands, such as chloride or thiocyanate, and kinetic studies carried out mainly on the substitution of the first water molecule at each metal centre reveal that the reaction at the three metal centres occurs with statistical kinetics; that is, a single exponential with a rate constant corresponding to the reaction at the third centre is observed instead of the expected three‐exponential kinetic trace. Such simplification of the kinetic equations requires the simultaneous fulfilment of two conditions: first that the three consecutive rate constants are in statistical ratio, and second that the metal centres behave as independent chromophores. The validity of those simplifications has been checked for the case of the reaction of [Mo3S4(H2O)9]4+ with Cl? by using DFT and TD‐DFT theoretical calculations. The results of those calculations are in agreement with the available experimental information, which indicates that the H2O ligands trans to the μ‐S undergo substitution much faster than those trans to the μ3‐S. Moreover, the energy barriers for the substitution of the first water molecule at the three metal centres are close to each other, the differences being compatible with the small changes in the numerical values of the rate constants required for observation of statistical kinetics. TD‐DFT calculations lead to calculated electronic spectra, which are in reasonable agreement with those experimentally measured, but the calculations do not indicate that the three metal centres behave as independent chromophores, although the mathematical conditions required for simplification of the kinetic traces to a single exponential are reasonably well fulfilled at certain wavelengths. A re‐examination of the kinetics of the reaction by using global fitting procedures yields results, which are compatible with statistical kinetics, although an alternative interpretation in which substitution only occurs at a single metal centre under reversible conditions is also possible.  相似文献   

6.
The theoretical background of the formation of N‐heterocyclic oxadiazoline carbenes through a metal‐assisted [2+3]‐dipolar cycloaddition (CA) reaction of nitrones R1CH?N(R2)O to isocyanides C?NR and the decomposition of these carbenes to imines R1CH?NR2 and isocyanates O?C?NR is discussed. Furthermore, the reaction mechanisms and factors that govern these processes are analyzed in detail. In the absence of a metal, oxadiazoline carbenes should not be accessible due to the high activation energy of their formation and their low thermodynamic stability. The most efficient promotors that could assist the synthesis of these species should be “carbenophilic” metals that form a strong bond with the oxadiazoline heterocycle, but without significant involvement of π‐back donation, namely, AuI, AuIII, PtII, PtIV, ReV, and PdII metal centers. These metals, on the one hand, significantly facilitate the coupling of nitrones with isocyanides and, on the other hand, stabilize the derived carbene heterocycles toward decomposition. The energy of the LUMOCNR and the charge on the N atom of the C?N group are principal factors that control the cycloaddition of nitrones to isocyanides. The alkyl‐substituted nitrones and isocyanides are predicted to be more active in the CA reaction than the aryl‐substituted species, and the N,N,C‐alkyloxadiazolines are more stable toward decomposition relative to the aryl derivatives.  相似文献   

7.
A systematic theoretical study has been performed on the recently reported RhI‐catalyzed [3+2+2] carbocyclization reactions between alkenylidenecyclopropanes (ACPs) and alkynes. With the aid of theoretical calculations, two possible mechanisms, that is, alkene‐carbometalation‐first and alkyne‐carbometalation‐first mechanisms, are examined in this study. In the oxidative addition step, the possibility of reaction on either the distal or proximal C? C bond of the cyclopropane group has been evaluated. The calculations indicate that the alkene‐activation‐first mechanism is more favored for the overall catalytic cycle. This mechanism involves four steps, that is, oxidative addition of the distal (rather than the proximal) C? C bond of cyclopropane group, alkene carbometalation, alkyne carbometalation, and reductive elimination. The rate‐determining step in the overall catalytic cycle is the carbometalation of the alkyne (i.e., the alkyne‐insertion step) and this step also determines the regioselectivity. Finally, the origin of the regioselectivity is determined by the steric effect (i.e., the steric crowding between the electron‐withdrawing group on alkyne and other ligands on the rhodium center) in the alkyne‐insertion step.  相似文献   

8.
Allene–ene–allene ( 2 and 5 ) and allene–yne–allene ( 3 and 7 ) N‐tosyl and O‐linked substrates were satisfactorily synthesised. The [2+2+2] cycloaddition reaction catalysed by the Wilkinson catalyst [RhCl(PPh3)3] was evaluated. Substrates 2 and 5 , which bear a double bond in the central position, gave a tricyclic structure in a reaction in which four contiguous stereogenic centres were formed as a single diastereomer. The reaction of substrates 3 and 7 , which bear a triple bond in the central position, gave a tricyclic structure with a cyclohexenic ring core, again in a diastereoselective manner. All cycloadducts were formed by a regioselective reaction of the inner allene double bond and, therefore, feature an exocyclic diene motif. A Diels–Alder reaction on N‐tosyl linked cycloadducts 8 and 10 allowed pentacyclic scaffolds to be diastereoselectively constructed. The reactivity of the allenes on [2+2+2] cycloaddition reactions was studied for the first time by density functional theory calculations. This mechanistic study rationalizes the order in which the unsaturations take part in the catalytic cycle, the reactivity of the two double bonds of the allene towards the [2+2+2] cycloaddition reaction, and the diastereoselectivity of the reaction.  相似文献   

9.
The synthetic utility of γ‐alkylidenebutenolides is demonstrated as highly competent dipolarophile partners in both intra‐ and intermolecular rhodium(II)‐catalyzed 1,3‐dipolar cycloaddition reactions. The strength of this approach lies in the formation of spiro[6,4]lactone moieties with the concomitant construction of quaternary spiro stereocenters. Typically, the construction of spirolactones involves an esterification step, which has often been reported as a “biosynthetic pathway”, and often occurs either as or near to the final step of a total synthesis. Furthermore, a convergent and versatile route is reported for the formation of the (5,7) skeleton of molecules that were isolated from the Schisandra genus. Computational studies were performed to provide an overall picture of the mechanism of the intermolecular [3+2] cycloaddition between 2‐diazo‐1,3‐ketoester and protoanemonin and to rationalize the empirical observations. In particular, we have demonstrated for the first time that the rhodium center plays an important role during the cyclization step itself and reacts with the dipolarophile as a complex with the ylide.  相似文献   

10.
High‐level electronic structure calculations, in combination with Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometric studies, permit the mechanism by which closed‐shell, “naked” [TaO2]+ brings about C?H bond activation of methane to be revealed. These studies also help to understand why the lighter congeners of [MO2]+ (M=V, Nb) are unreactive under ambient conditions.  相似文献   

11.
N-tosyl-linked open-chain yne-ene-yne enediynes 1 and 2 and yne-yne-ene enediynes 3 and 4 have been satisfactorily synthesised. The [2+2+2] cycloaddition process catalysed by the Wilkinson catalyst [RhCl(PPh(3))(3)] was tested with the above-mentioned substrates resulting in the production of high yields of the cycloadducts. Enediynes 1 and 2 gave standard [2+2+2] cycloaddition reactions whereas enediynes 3 and 4 suffered β-hydride elimination followed by reductive elimination of the Wilkinson catalyst to give cycloadducts, which are isomers of those that would be obtained by standard [2+2+2] cycloaddition reactions. The different reactivities of these two types of enediyne have been rationalised by density functional theory calculations.  相似文献   

12.
王春  刘伟华  周欣  李越敏  李云鹏 《化学进展》2009,21(9):1857-1868
有机催化不对称合成反应是目前国内外研究最为活跃的领域之一。不对称[4+2]环加成(Diels-Alder)反应是合成光学活性环状化合物的有效手段,目前报道的催化不对称Diels-Alder反应的有机催化剂主要有手性咪唑啉酮、手性Br?nsted酸、手性伯胺、金鸡纳碱衍生物等。本文对各类有机催化剂在有机催化不对称Diels-Alder反应中的应用研究进展,以及不对称诱导反应的机理进行了评述。  相似文献   

13.
14.
A detailed study of the Ni‐catalyzed [4+3+2] cycloaddition reaction between ethyl cyclopropylideneacetate and dienynes has been conducted, resulting in the development of a new method for the synthesis of compounds containing nine‐membered rings. We studied the reactivity of various dienynes, together with their substituent and conformational effects. The mechanism of the reaction was probed by examining the stoichiometric reactions of the Ni complexes and dienynes.  相似文献   

15.
综述了近年来钯催化[4+2]环加成反应的研究进展.重点讨论了钯催化[4+2]环加成反应的影响因素,如二烯体和亲二烯体、催化剂用量、配体、溶剂、反离子、温度及反应时间  相似文献   

16.
The [3+2] cycloaddition reaction of a tungsten‐containing carbonyl ylide with methyl vinyl ether and the insertion reactions of the nonstabilized carbene complex intermediates produced have been investigated through the use of B3LYP density functional theory. The [3+2] cycloaddition reaction of the tungsten‐containing carbonyl ylide has been proven to proceed concertedly, reversibly, and with high endo selectivity. The intermolecular Si? H insertion reactions of the carbene complex intermediates have been proven to be favored over the intramolecular C? H insertion, in good agreement with experimental results. Moreover, the kinetic endo/exo ratio of the [3+2] cycloaddition reaction has been shown to determine the endo/exo selectivity of the Si? H insertion products. In addition, secondary orbital interactions involving the benzene ring and the carbonyl ligand on the metal center have turned out to strongly influence the high endo selectivity of the [3+2] cycloaddition reaction with methyl vinyl ether.  相似文献   

17.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

18.
The synthesis of carbapenems from 4-(2-propynyl)azetidinones assisted by both Ag+ and [W(CO)5] was theoretically investigated by using the B3LYP/6-31+G(d)-LANL2DZ level, taking into account the effect of solvent by the PB-SCRF model implemented in Jaguar. According to our results, the silver-assisted cyclization is a concerted process for which the low yield experimentally observed could mainly stem from the alkaline hydrolysis of the beta-lactam ring. This process is very efficiently catalyzed by Ag+, making it competitive with the formation of the carbapenem. The cycloisomerization of 4-(2-propynyl)azetidinone promoted by [W(CO)5] is proposed as an alternative synthetic strategy to obtain the carbapenem. The endo cycloisomerization is by far the most favorable one. When the process is assisted by [(thf)W(CO)5], although the main product is the carbapenem, the formation of a carbene complex represents a certain competition. The presence of a Me3N molecule from the very start of the reaction causes an important catalytic effect considerably reducing the energy barriers corresponding to the H atom transfers and rendering a very efficient process. Moreover, this catalytic action determines the evolution of the system through only one mechanistic route which produces the carbapenem, hindering the formation of the carbene. Therefore, the cycloisomerization of 4-(2-propynyl)azetidinone promoted by [(Me3N)W(CO)5] constitutes an interesting alternative to the silver-assisted cyclization.  相似文献   

19.
Opening the cluster core : Substitution of the chloride ligand in the novel cationic cluster [W3CuS4H3Cl(dmpe)3]+ (see figure; dmpe=1,2‐bis(dimethylphosphino)ethane) by acetonitrile is promoted by water addition. Kinetic and density functional theory studies lead to a mechanistic proposal in which acetonitrile or water attack causes the opening of the cluster core with dissociation of one of the Cu? S bonds to accommodate the entering ligand.

  相似文献   


20.
As the strongest triple bond in nature, the N≡N triple bond activation has always been a challenging project in chemistry. On the other hand, since the award of the Nobel Prize in Chemistry in 1950, the Diels-Alder reaction has served as a powerful and widely applied tool in the synthesis of natural products and new materials. However, the application of the Diels-Alder reaction to dinitrogen activation remains less developed. Here we first demonstrate that a transition-metal-involved [4+2] Diels-Alder cycloaddition reaction could be used to activate dinitrogen without an additional reductant by density functional theory calculations. Further study reveals that such a dinitrogen activation by 1-metalla-1,3-dienes screened out from a series of transition metal complexes (38 species) according to the effects of metal center, ligand, and substituents can become favorable both thermodynamically (with an exergonicity of 28.2 kcal mol−1) and kinetically (with an activation energy as low as 13.8 kcal mol−1). Our findings highlight an important application of the Diels-Alder reaction in dinitrogen activation, inviting experimental chemists’ verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号