首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd ( 1 ), Dy ( 2 )] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2 . DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1 . Acute ?Ni?O?Gd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni???Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni???Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as ?1.45 cm?1. The strong Ni???Dy and next‐nearest‐neighbour Ni???Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2 . The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni???Dy and the Ni???Ni interactions in the magnetization relaxation of complex 2 . To the best of our knowledge, this is the first time that the roles of both the Ni???Dy and Ni???Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established.  相似文献   

2.
3.
4.
[{Mn(TPA)I}{UO2(Mesaldien)}{Mn(TPA)I}]I formula (here TPA=tris(2-pyridylmethyl)amine and Mesaldien=N,N’-(2-aminomethyl)diethylenebis(salicylidene imine)) reported by Mazzanti and coworkers (Chatelain et al. Angew. Chem. Int. Ed. 2014 , 53, 13434) is so far the best Single Molecule Magnet (SMM) in the {3d–5f} class of molecules exhibiting barrier height of magnetization reversal as high as 81.0 K. In this work, we have employed a combination of ab initio CAS and DFT methods to fully characterize this compound and to extract the relevant spin Hamiltonian parameters. We show that the signs of the magnetic coupling and of the g-factors of the monomers are interconnected. The central magnetic unit [UVO2]+ is described by a Kramers Doublet (KD) with negative g-factors, due to a large orbital contribution. The magnetic coupling for the {Mn(II)-U(V)} pair is modeled by an anisotropic exchange Hamiltonian: all components are ferromagnetic in terms of spin moments, the parallel component JZ twice larger as the perpendicular one J. The spin density distribution suggests that spin polarization on the U(V) center favors the ferromagnetic coupling. Further, the JZ/J ratio, which is related to the barrier height, was found to correlate to the corresponding spin contribution of the g-factors of the U(V) center. This correlation established for the first time offers a direct way to estimate this important ratio from the corresponding gS-values, which can be obtained using traditional ab initio packages and hence has a wider application to other {3d–5f} magnets. It is finally shown that the magnetization barrier height is tuned by the splitting of the [UVO2]+ 5 f orbitals.  相似文献   

5.
Multitopic organic linkers can provide a means to organize metal cluster nodes in a regular three‐dimensional array. Herein, we show that isonicotinic acid N‐oxide (HINO) serves as the linker in the formation of a metal–organic framework featuring Dy2 single‐molecule magnets as nodes. Importantly, guest solvent exchange induces a reversible single‐crystal to single‐crystal transformation between the phases Dy2(INO)4(NO3)2?2 solvent (solvent=DMF (Dy2‐DMF), CH3CN (Dy2‐CH3CN)), thereby switching the effective magnetic relaxation barrier (determined by ac magnetic susceptibility measurements) between a negligible value for Dy2‐DMF and 76 cm?1 for Dy2‐CH3CN. Ab initio calculations indicate that this difference arises not from a significant change in the intrinsic relaxation barrier of the Dy2 nodes, but rather from a slowing of the relaxation rate of incoherent quantum tunneling of the magnetization by two orders of magnitude.  相似文献   

6.
7.
Efficient modulation of single‐molecule magnet (SMM) behavior was realized by deliberate structural modification of the Dy2 cores of [Dy2( a ′ povh )2(OAc)2(DMF)2] ( 1 ) and [Zn2Dy2( a′povh )2(OAc)6] ? 4 H2O ( 2 ; H2 a ′ povh =N′‐[amino(pyrimidin‐2‐yl)methylene]‐o‐vanilloyl hydrazine). Compound 1 having fourfold linkage between the two dysprosium ions shows high‐performance SMM behavior with a thermal energy barrier of 322.1 K, whereas only slow relaxation is observed for compound 2 with only twofold connection between the dysprosium ions. This remarkable discrepancy is mainly because of strong axiality in 1 due to one pronounced covalent bond, as revealed by experimental and theoretical investigations. The significant antiferromagnetic interaction derived from bis(μ2‐O) and two acetate bridging groups was found to be crucial in leading to a nonmagnetic ground state in 1 , by suppressing zero‐field quantum tunneling of magnetization.  相似文献   

8.
The influence of nuclear spin on the magnetic hysteresis of a single‐molecule is evidenced. Isotopically enriched DyIII complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single‐molecule magnets (SMMs), and provides an important step for their integration into molecule‐based devices.  相似文献   

9.
Two novel trinuclear complexes [ZnCl(μ‐L)Ln(μ‐L)ClZn][ZnCl3(CH3OH)]?3 CH3OH (LnIII=Dy ( 1 ) and Er ( 2 )) have been prepared from the compartmental ligand N,N′‐dimethyl‐N,N′‐bis(2‐hydroxy‐3‐formyl‐5‐bromo‐benzyl)ethylenediamine (H2L). X‐ray studies reveal that LnIII ions are coordinated by two [ZnCl(L)]? units through the phenoxo and aldehyde groups, giving rise to a LnO8 coordination sphere with square‐antiprism geometry and strong easy‐axis anisotropy of the ground state. Ab initio CASSCF+RASSI calculations carried out on 1 confirm that the ground state is an almost pure MJ=±15/2 Kramers doublet with a marked axial anisotropy, the magnetic moment is roughly collinear with the shortest Dy?O distances. This orientation of the local magnetic moment of the DyIII ion in 1 is adopted to reduce the electronic repulsion between the oblate electron shape of the MJ=±15/2 Kramers doublet and the phenoxo‐oxygen donor atoms involved in the shortest Dy?O bonds. CASSCF+RASSI calculations also show that the ground and first excited states of the DyIII ion are separated by 129 cm?1. As expected for this large energy gap, compound 1 exhibits, in a zero direct‐current field, thermally activated slow relaxation of the magnetization with a large Ueff=140 K. The isostructural Zn–Er–Zn species does not present significant SMM behavior as expected for the prolate electron‐density distribution of the ErIII ion leading to an easy‐plane anisotropy of the ground doublet state.  相似文献   

10.
11.
The mononuclear manganese bis‐terpyridine complex [Mn(tolyl‐terpy)2](X)3 ( 1 (X)3; X=BF4, ClO4, PF6; tolyl‐terpy=4′‐(4‐methylphenyl)‐2,2′:6′,2“‐terpyridine), containing Mn in the unusual +III oxidation state, has been isolated and characterised. The 1 3+ ion is a rare example of a mononuclear MnIII complex stabilised solely by neutral N ligands. Complex 1 3+ is obtained by electrochemical oxidation of the corresponding MnII compound 1 2+ in anhydrous acetonitrile. Under these conditions the cyclic voltammogram of 1 2+ exhibits not only the well‐known MnII/MnIII oxidation at E1/2=+0.91 V versus Ag/Ag+ (+1.21 V vs. SCE) but also a second metal‐based oxidation process corresponding to MnIII/MnIV at E1/2=+1.63 V (+1.93 V vs. SCE). Single crystals of 1 (PF6)3?2 CH3CN were obtained by an electrocrystallisation procedure. X‐ray analysis unambiguously revealed its tetragonally compressed octahedral geometry and high‐spin character. The electronic properties of 1 3+ were investigated in detail by magnetic measurements and theoretical calculations, from which a D value of +4.82 cm?1 was precisely determined. Density functional and complete active space self consistent field ab initio calculations both correctly predict a positive sign of D, in agreement with the compressed tetragonal distortion observed in the X‐ray structure of 1 (PF6)3?2 CH3CN. The different contributions to D were calculated, and the results show that 1) the spin–orbit coupling part (+2.593 cm?1) is predominant compared to the spin–spin interaction (+1.075 cm?1) and 2) the excited triplet states make the dominant contribution to the total D value.  相似文献   

12.
The basis‐set dependence and quasirelativistic and nonrelativistic effects on the Au C2H4 interaction are examined at the ab initio level. The effects on the interaction energies are modulated by f‐type polarization orbitals, using 19‐VE quasirelativistic pseudopotentials. Oscillation in the equilibrium Au C distance as well as in the interaction energy are sensitive to the electron correlation potential. These effects are evaluated at several levels of theory, ranging from MP2 to CCSD(T). The nature of the Au C2H4 interaction is related to a simple dispersion expression involving the individual properties of each component and its long‐distance behavior. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 317–324, 1999  相似文献   

13.
14.
A Fourier transform ion cyclotron resonance spectrometry (FT‐ICR) study of the gas‐phase protonation of ammonia‐borane and sixteen amine/boranes R1R2R3N? BH3 (including six compounds synthesized for the first time) has shown that, without exception, the protonation of amine/boranes leads to the formation of dihydrogen. The structural effects on the experimental energetic thresholds of this reaction were determined experimentally. The most likely intermediate and the observed final species (besides H2) are R1R2R3N? BH4+ and R1R2R3N? BH2+, respectively. Isotopic substitution allowed the reaction mechanism to be ascertained. Computational analyses ([MP2/6‐311+G(d,p)] level) of the thermodynamic stabilities of the R1R2R3N? BH3 adducts, the acidities of the proton sources required for dihydrogen formation, and the structural effects on these processes were performed. It was further found that the family of R1R2R3N? BH4+ ions is characterized by a three‐center, two‐electron bond between B and a loosely bound H2 molecule. Unexpected features of some R1R2R3N? BH4+ ions were found. This information allowed the properties of amine/boranes most suitable for dihydrogen generation and storage to be determined.  相似文献   

15.
In situ mixtures of CdCl2?TMEDA (0.5 equiv; TMEDA=N,N,N′,N′‐tetramethylethylenediamine) or InCl3 (0.33 equiv) with [Li(tmp)] (tmp=2,2,6,6‐tetramethylpiperidino; 1.5 or 1.3 equiv, respectively) were compared with the previously described mixture of ZnCl2?TMEDA (0.5 equiv) and [Li(tmp)] (1.5 equiv) for their ability to deprotonate anisole, benzothiazole, and pyrimidine. [(tmp)3CdLi] proved to be the best base when used in tetrahydrofuran at room temperature, as demonstrated by subsequent trapping with iodine. The Cd–Li base then proved suitable for the metalation of a large range of aromatics including benzenes bearing reactive functional groups (CONEt2, CO2Me, CN, COPh) or heavy halogens (Br, I), and heterocycles (from the furan, thiophene, pyrrole, oxazole, thiazole, pyridine, and diazine series). Five‐membered heterocycles benefiting from doubly activated positions were similarly dideprotonated at room temperature. The aromatic lithium cadmates thus obtained were involved in palladium‐catalyzed cross‐coupling reactions or simply quenched with acid chlorides.  相似文献   

16.
Propelling magnetism : Supramolecular organization leads to a remarkable dodecanuclear {Cu3Dy3}2 cluster with a “double–propeller” shape (see picture). The linkages of the CuDy units, both intramolecular and supramolecular, appear to be responsible for a drastic change in the single molecule magnetic behavior.

  相似文献   


17.
Three new Dy complexes have been prepared according to a complex‐as‐ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L2? is the di‐deprotonated form of the N2O2 compartmental N,N′‐2,2‐dimethylpropylenedi(3‐methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)‐Dy‐(LZnX), are tricationic with X=H2O and monocationic with X=Br or Cl. They behave as field‐free single‐molecule magnets (SMMs) with effective energy barriers (Ueff) for the reversal of the magnetization of 96.9(6) K with τ0=2.4×10?7 s, 146.8(5) K with τ0=9.2×10?8 s, and 146.1(10) K with τ0=9.9×10?8 s for compounds with Zn?OH2, Zn?Br, and Zn?Cl motifs, respectively. The Cole–Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff=128.6(5) K and τ0=1.8×10?8 s for 1 , Ueff=214.7 K and τ0=9.8×10?9 s for 2 , and Ueff=202.4 K and τ0=1.5×10?8 s for 3 . The two pairs of largely negatively charged phenoxido oxygen atoms with short Dy?O bonds are positioned at opposite sides of the Dy3+ ion, which thus creates a strong crystal field that stabilizes the axial MJ=±15/2 doublet as the ground Kramers doublet. Although the compound with the Zn?OH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy‐axis anisotropy of the ground Kramers doublet and predict zero‐field SMM behavior through Orbach and TA‐QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn2+ ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal‐centered luminescence after excitation into the UV π–π* absorption band of ligand L2? at λ=335 nm, which results in the appearance of the characteristic DyIII (4F9/26HJ/2; J=15/2, 13/2) emission bands in the visible region.  相似文献   

18.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

19.
Investigations on the Staudinger reaction between 1,8‐diazidonaphthalene and phosphorous(III) building blocks, a key step in the synthesis of superbasic bisphosphazene proton sponges, yielded a set of bisphosphazides with a constrained geometry 1,8‐disubstituted naphthalene backbone. This compound class has attracted our interest not only due to their surprisingly high stability, but in particular because of their theoretically predicted basicity in the range of their bisphosphazene analogues that can be referred to the constrained geometry interaction of two highly basic nitrogen atoms. Eleven new bisphosphazides bearing simple P‐amino groups as well as P‐guanidino substituents, azaphosphatrane moieties, P2 building blocks, or chiral P‐amino substituents derived from L ‐proline are presented. They were studied concerning their spectroscopic properties and partly also their chromophoric and structural features. In the case of the pyrrolidino‐substituted TPPN(2N2) (TPPN=1,8‐bis(trispyrrolidinophosphazenyl)naphthalene), the stepwise nitrogen elimination is investigated theoretically and experimentally, which led to the isolation and structural characterization of TPPN(1N2) bearing a phosphazide and a phosphazene functionality in one molecule. Attempts to protonate the obtained bisphosphazides and to prove the computationally predicted pKBH+ values through NMR titration reactions resulted in their decay, which again was rationalized by theoretical calculations. Altogether we present the so far most extensive spectroscopic, structural and theoretical investigation of constrained geometry bisphosphazides and their Brønsted and Lewis basic properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号