首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Pentaphosphaferrocenes [CpRFe(η5‐P5)] ( 1 ) and CuI halides are excellent building blocks for the formation of discrete supramolecules. Herein, we demonstrate the potential of Cu(CF3SO3) for the construction of the novel 2D polymer [{Cp*Fe(μ45:1:1:1‐P5)}{Cu(CF3SO3)}]n ( 2 ) and the unprecedented nanosphere (CH2Cl2)1.4@[{CpBnFe(η5‐P5)}12{Cu(CF3SO3)}19.6] ( 3 ). The supramolecule 3 has a unique scaffold beyond the fullerene topology, with 20 copper atoms statistically distributed over the 30 vertices of an icosidodecahedron. Combinatorics was used to interpret the average disordered structure of the supramolecules. In this case, only two pairs of enantiomers with D5 and D2 symmetry are possible for bidentate bridging coordination of the triflate ligands. DFT calculations showed that differences in the energies of the isomers are negligible. The benzyl ligands enhance the solubility of 3 , enabling NMR‐spectroscopic and mass‐spectrometric investigations.  相似文献   

2.
Unprecedented functionalized products with an η4‐P5 ring are obtained by the reaction of [Cp*Fe(η5‐P5)] ( 1 ; Cp*=η5‐C5Me5) with different nucleophiles. With LiCH2SiMe3 and LiNMe2, the monoanionic products [Cp*Fe(η4‐P5CH2SiMe3)]? and [Cp*Fe(η4‐P5NMe2)]?, respectively, are formed. The reaction of 1 with NaNH2 leads to the formation of the trianionic compound [{Cp*Fe(η4‐P5)}2N]3?, whereas the reaction with LiPH2 yields [Cp*Fe(η4‐P5PH2)]? as the main product, with {[Cp*Fe(η4‐P5)]2PH}2? as a byproduct. The calculated energy profile of the reactions provides a rationale for the formation of the different products.  相似文献   

3.
Treatment of the pentaphosphaferrocene [Cp*Fe(η5‐P5)] with CuI halides in the presence of different templates leads to novel fullerene‐like spherical molecules that serve as hosts for the templates. If ferrocene is used as the template the 80‐vertex ball [Cp2Fe]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 4 ), with an overall icosahedral C80 topological symmetry, is obtained. This result shows the ability of ferrocene to compete successfully with the internal template of the reaction system [Cp*Fe(η5‐P5)], although the 90‐vertex ball [{Cp*Fe(η511111‐P5)}12(CuCl)10(Cu2Cl3)5{Cu(CH3CN)2}5] ( 2 a ) containing pentaphosphaferrocene as a guest is also formed as a byproduct. With use of the triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] as a template the reaction between [Cp*Fe(η5‐P5)] and CuBr leads to the 90‐vertex ball [(CpCr)2(μ,η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuBr}10{Cu2Br3}5{Cu(CH3CN)2}5] ( 6 ), in which the complete molecule acts as a template. However, if the corresponding reaction is instead carried out with CuCl, cleavage of the triple‐decker complex is found and the 80‐vertex ball [CpCr(η5‐As5)]@[{Cp*Fe(η5‐P5)}12{CuCl}20] ( 5 ) is obtained. This accommodates as its guest [CpCr(η5‐As5)], which has only 16 valence electrons in a triplet ground state and is not known as a free molecule. The triple‐decker sandwich complex [(CpCr)2(μ,η5‐As5)] requires 53.1 kcal mol?1 to undergo cleavage (as calculated by DFT methods) and therefore this reaction is clearly endothermic. All new products have been characterized by single‐crystal X‐ray crystallography. A favoured orientation of the guest molecules inside the host cages has been identified, which shows π???π stacking of the five‐membered rings (Cp and cyclo‐As5) of the guests and the cyclo‐P5 rings of the nanoballs of the hosts.  相似文献   

4.
Copper plays an important role in alkyne coordination chemistry and transformations. This report describes the isolation and full characterization of a thermally stable, copper(I) acetylene complex using a highly fluorinated bis(pyrazolyl)borate ligand support. Details of the related copper(I) complex of HC≡CSiMe3 are also reported. They are three-coordinate copper complexes featuring η2-bound alkynes. Raman data show significant red-shifts in C≡C stretch of [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CH) and [H2B(3,5-(CF3)2Pz)2]Cu(HC≡CSiMe3) relative to those of the corresponding alkynes. Computational analysis using DFT indicates that the Cu(I) alkyne interaction in these molecules is primarily of the electrostatic character. The π-backbonding is the larger component of the orbital contribution to the interaction. The dinuclear complexes such as Cu2(μ-[3,5-(CF3)2Pz])2(HC≡CH)2 display similar Cu-alkyne bonding features. The mononuclear [H2B(3,5-(CF3)2Pz)2]Cu(NCMe) complex catalyzes [3 + 2] cycloadditions between tolyl azide and a variety of alkynes including acetylene. It is comparatively less effective than the related trinuclear copper catalyst {μ-[3,5-(CF3)2Pz]Cu}3 involving bridging pyrazolates.  相似文献   

5.
The pentaaryl borole (Ph*C)4BXylF [Ph*=3,5‐tBu2(C6H3); XylF=3,5‐(CF3)2(C6H3)] reacts with low‐valent Group 13 precursors AlCp* and GaCp* by two divergent routes. In the case of [AlCp*]4, the borole reacts as an oxidising agent and accepts two electrons. Structural, spectroscopic, and computational analysis of the resulting unprecedented neutral η5‐Cp*,η5‐[(Ph*C)4BXylF] complex of AlIII revealed a strong, ionic bonding interaction. The formation of the heteroleptic borole‐cyclopentadienyl “aluminocene” leads to significant changes in the 13C NMR chemical shifts within the borole unit. In the case of the less‐reductive GaCp*, borole (Ph*C)4BXylF reacts as a Lewis acid to form a dynamic adduct with a dative 2‐center‐2‐electron Ga?B bond. The Lewis adduct was also studied structurally, spectroscopically, and computationally.  相似文献   

6.
A route to directly access mixed Al–Fe polyphosphide complexes was developed. The reactivity of pentaphosphaferrocene, [Cp*Fe(η5‐P5)] (Cp*=C5Me5), with two different low‐valent aluminum compounds was investigated. The steric and electronic environment around the [AlI] centre are found to be crucial for the formation of the resulting Al–Fe polyphosphides. Reaction with the sterically demanding [Dipp‐BDIAlI] (Dipp‐BDI={[2,6‐iPr2C6H3NCMe]2CH}?) resulted in the first Al‐based neutral triple‐decker type polyphosphide complex. For [(Cp*AlI)4], an unprecedented regioselective insertion of three [Cp*AlIII]2+ moieties into two adjacent P?P bonds of the cyclo‐P5 ring of [Cp*Fe(η5‐P5)] was observed. The regioselectivity of the insertion reaction could be rationalized by isolating an analogue of the reaction intermediate stabilized by a strong σ‐donor carbene.  相似文献   

7.
Triangulated Dodecahedral Heterotrimetallic‐ and ‐tetrametallic Iron–Ruthenium Clusters with CpR and Pn Ligands (n = 5, 4) The cothermolysis of [Cp*Fe(η5‐P5)] ( 1 ) and [{Cp″(OC)2Ru}2](Ru–Ru) ( 2 ), Cp″ = C5H3But2‐1,3, affords low yields of [Cp″Ru(η5‐P5)] ( 3 ) and [{Cp″Ru}2P4] ( 4 ) as well as the triangulated dodecahedral hetero‐ and homotrimetallic clusters [{Cp″Ru}2{Cp*Fe}P5] ( 5 ), [{Cp″Ru}3P5] ( 6 ), [{Cp*Fe}2{Cp″Ru}P5] ( 7 ) and the tetranuclear compound [{Cp″Ru}3{Cp*Fe}P4] ( 8 ). X‐ray crystallographic studies show that the P5 ligand in the distorted M2M′P5‐triangulated dodecahedra of 5 and 7 offers an unusual novel coordination mode derived from the educt 1 .  相似文献   

8.
A series of molecular group 2 polyphosphides has been synthesized by using air-stable [Cp*Fe(η5-P5)] (Cp*=C5Me5) or white phosphorus as polyphosphorus precursors. Different types of group 2 reagents such as organo-magnesium, mono-valent magnesium, and molecular calcium hydride complexes have been investigated to activate these polyphosphorus sources. The organo-magnesium complex [(DippBDI−Mg(CH3))2] (DippBDI={[2,6-iPr2C6H3NCMe]2CH}) reacts with [Cp*Fe(η5-P5)] to give an unprecedented Mg/Fe-supramolecular wheel. Kinetically controlled activation of [Cp*Fe(η5-P5)] by different mono-valent magnesium complexes allowed the isolation of Mg-coordinated formally mono- and di-reduced products of [Cp*Fe(η5-P5)]. To obtain the first examples of molecular calcium-polyphosphides, a molecular calcium hydride complex was used to reduce the aromatic cyclo-P5 ring of [Cp*Fe(η5-P5)]. The Ca-Fe-polyphosphide is also characterized by quantum chemical calculations and compared with the corresponding Mg complex. Moreover, a calcium coordinated Zintl ion (P7)3− was obtained by molecular calcium hydride mediated P4 reduction.  相似文献   

9.
The synthesis and characterization of the first supramolecular aggregates incorporating the organometallic cyclo‐P3 ligand complexes [CpRMo(CO)23‐P3)] (CpR=Cp (C5H5; 1a ), Cp* (C5(CH3)5; 1b )) as linking units is described. The reaction of the Cp derivative 1a with AgX (X=CF3SO3, Al{OC(CF3)3}4) yields the one‐dimensional (1D) coordination polymers [Ag{CpMo(CO)2(μ,η311‐P3)}2]n[Al{OC(CF3)3}4]n ( 2 ) and [Ag{CpMo(CO)2(μ,η311‐P3)}3]n[X]n (X=CF3SO3 ( 3a ), Al{OC(CF3)3}4 ( 3b )). The solid‐state structures of these polymers were revealed by X‐ray crystallography and shown to comprise polycationic chains well‐separated from the weakly coordinating anions. If AgCF3SO3 is used, polymer 3a is obtained regardless of reactant stoichiometry whereas in the case of Ag[Al{OC(CF3)3}4], reactant stoichiometry plays a decisive role in determining the structure and composition of the resulting product. Moreover, polymers 3a, b are the first examples of homoleptic silver complexes in which AgI centers are found octahedrally coordinated to six phosphorus atoms. The Cp* derivative 1b reacts with Ag[Al{OC(CF3)3}4] to yield the 1D polymer [Ag{Cp*Mo(CO)2(μ,η321‐P3)}2]n[Al{OC(CF3)3}4]n ( 4 ), the crystal structure of which differs from that of polymer 2 in the coordination mode of the cyclo‐P3 ligands: in 2 , the Ag+ cations are bridged by the cyclo‐P3 ligands in a η11 (edge bridging) fashion whereas in 4 , they are bridged exclusively in a η21 mode (face bridging). Thus, one third of the phosphorus atoms in 2 are not coordinated to silver while in 4 , all phosphorus atoms are engaged in coordination with silver. Comprehensive spectroscopic and analytical measurements revealed that the polymers 2 , 3a , b , and 4 depolymerize extensively upon dissolution and display dynamic behavior in solution, as evidenced in particular by variable temperature 31P NMR spectroscopy. Solid‐state 31P magic angle spinning (MAS) NMR measurements, performed on the polymers 2 , 3b , and 4 , demonstrated that the polymers 2 and 3b also display dynamic behavior in the solid state at room temperature. The X‐ray crystallographic characterisation of 1b is also reported.  相似文献   

10.
Reduction of [Cp*Fe(η5‐As5)] with [Cp′′2Sm(thf)] (Cp′′=η5‐1,3‐(tBu)2C5H3) under various conditions led to [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] and [(Cp′′2Sm)2As7(Cp*Fe)]. Both compounds are the first polyarsenides of the rare‐earth metals. [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] is also the first d/f‐triple decker sandwich complex with a purely inorganic planar middle deck. The central As42? unit is isolobal with the 6π‐aromatic cyclobutadiene dianion (CH)42?. [(Cp′′2Sm)2As7(Cp*Fe)] contains an As73? cage, which has a norbornadiene‐like structure with two short As?As bonds in the scaffold. DFT calculations confirm all the structural observations. The As?As bond order inside the cyclo As4 ligand in [(Cp′′2Sm)(μ,η44‐As4)(Cp*Fe)] was estimated to be in between an As?As single bond and a formally aromatic As42? system.  相似文献   

11.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

12.
The redox chemistry of [Cp*Fe(η5-As5)] ( 1 , Cp*=η5-C5Me5) has been investigated by cyclic voltammetry, revealing a redox behavior similar to that of its lighter congener [Cp*Fe(η5-P5)]. However, the subsequent chemical reduction of 1 by KH led to the formation of a mixture of novel Asn scaffolds with n up to 18 that are stabilized only by [Cp*Fe] fragments. These include the arsenic-poor triple-decker complex [K(dme)2][{Cp*Fe(μ,η2:2-As2)}2] ( 2 ) and the arsenic-rich complexes [K(dme)3]2[(Cp*Fe)2(μ,η4:4-As10)] ( 3 ), [K(dme)2]2[(Cp*Fe)2(μ,η2:2:2:2-As14)] ( 4 ), and [K(dme)3]2[(Cp*Fe)444:3:3:2:2:1:1-As18)] ( 5 ). Compound 4 and the polyarsenide complex 5 are the largest anionic Asn ligand complexes reported thus far. Complexes 2 – 5 were characterized by single-crystal X-ray diffraction, 1H NMR spectroscopy, EPR spectroscopy ( 2 ), and mass spectrometry. Furthermore, DFT calculations showed that the intermediate [Cp*Fe(η5-As5)], which is presumably formed first, undergoes fast dimerization to the dianion [(Cp*Fe)2(μ,η4:4-As10)]2−.  相似文献   

13.
Reactions of Cu+ containing the weakly coordinating anion [Al{OC(CF3)3}4]? with the polyphosphorus complexes [{CpMo(CO)2}2(μ,η22‐P2)] ( A ), [CpM(CO)23‐P3)] (M=Cr( B1 ), Mo ( B2 )), and [Cp*Fe(η5‐P5)] ( C ) are presented. The X‐ray structures of the products revealed mononuclear ( 4 ) and dinuclear ( 1 , 2 , 3 ) CuI complexes, as well as the one‐dimensional coordination polymer ( 5 a ) containing an unprecedented [Cu2( C )3]2+ paddle‐wheel building block. All products are readily soluble in CH2Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature 31P{1H} NMR spectroscopy.  相似文献   

14.
The reaction of the 1,2,4-triphosphaferrocene [Cp*Fe(η5-P3C2tBu2)] (1) with CuX (X = Cl, Br, I) in a 1:1 stoichiometric ratio leads to the formation of the oligomeric compounds [{Cu(μ-X)}66-X)Cu(MeCN)3{μ,η2-(Cp*Fe(η5-P3C2tBu2))}233-(Cp*Fe(η5-P3C2tBu2))}] (X = Cl (2), Br (3)) and [{Cu(μ-I)}3{Cu(μ3-I)}3Cu(μ6-I){μ,η2-(Cp*Fe(η5-P3C2tBu2))}31-(Cp*Fe(η5-P3C2tBu2))}] (4) revealing Cu(I) halide cages surrounded by 1,2,4-triphosphaferrocene moieties. The reaction of [Cp*Fe(η5-P3C2tBu2)] with CuI in a 1:4 stoichiometry leads to the formation of the two-dimensional polymer [{Cu(μ-I)}4{Cu(μ3-I)(MeCN)}233-(Cp*Fe(P3C2tBu2))}]n (5). The oligomeric compounds show dynamic behavior in solution monitored by 31P NMR spectroscopy. All compounds are additionally characterized by single crystal X-ray diffraction.  相似文献   

15.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

16.
By the reaction of [Cp*Fe(η5-As5)] ( I ) (Cp*=C5Me5) with main group nucleophiles, unique functionalized products with η4-coordinated polyarsenide (Asn) units (n=5, 6, 20) are obtained. With carbon-based nucleophiles such as MeLi or KBn (Bn=CH2Ph), the anionic organo-substituted polyarsenide complexes, [Li(2.2.2-cryptand)][Cp*Fe(η4-As5Me)] ( 1 a ) and [K(2.2.2-cryptand)][Cp*Fe{η4-As5(CH2Ph)}] ( 1 b ), are accessible. The use of KAsPh2 leads to a selective and controlled extension of the As5 unit and the formation of the monoanionic compound [K(2.2.2-cryptand][Cp*Fe(η4-As6Ph2)] ( 2 ). When I is reacted with [M]As(SiMe3)2 (M=Li ⋅ THF; K), the formation of the largest known anionic polyarsenide unit in [M′(2.2.2-cryptand)]2[(Cp*Fe)45443311-As20}] ( 3 ) occurred (M′=Li ( 3 a ), K ( 3 b )).  相似文献   

17.
The reaction of [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) with MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) leads through NHC‐induced phosphorus cation abstraction to the ring contraction product [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), which represents the first example of an anionic CoP3 complex. Such NHC‐induced ring contraction reactions are also applicable for triple‐decker sandwich complexes. The complexes [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) can be transformed to the complexes [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ), with 4 b representing the first structurally characterized example of an NHC‐substituted AsI cation. Further, the reaction of the vanadium complex [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) with MeNHC results in the formation of the unprecedented complexes [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) and [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

18.
The coordination properties of new types of bidentate phosphane and arsane ligands with a narrow bite angle are reported. The reactions of [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] ( 1 a ) with the copper salt [Cu(CH3CN)4][BF4] leads, depending on the stoichiometry, to the formation of the spiro compound [{{Cp′′′Fe(CO)2}231:1:1:1‐P4)}2Cu]+[BF4]? ( 2 ) or the monoadduct [{Cp′′′Fe(CO)2}231:1:2‐P4){Cu(MeCN)}]+[BF4]? ( 3 ). Similarly, the arsane ligand [{Cp′′′Fe(CO)2}2(μ,η1:1‐As4)] ( 1 b ) reacts with [Cu(CH3CN)4][BF4] to give [{{Cp′′′Fe(CO)2}231:1:1:1‐As4)}2Cu]+[BF4]? ( 5 ). Protonation of 1 a occurs at the “wing tip” phosphorus atoms, which is in line with the results of DFT calculations. The compounds are characterized by spectroscopic methods (heteronuclear NMR spectroscopy and IR spectrometry) and by single‐crystal X‐ray diffraction studies.  相似文献   

19.
New dicationic triple-decker complexes with a bridging boratabenzene ligand [Cp*Fe(μ-η:η-C5H5BMe)ML]X2 (ML=CoCp*, 6(CF3SO3)2; RhCp, 7(BF4)2; IrCp, 8(CF3SO3)2; Ru(η-C6H6), 9(CF3SO3)2; Ru(η-C6H3Me3-1,3,5), 10(CF3SO3)2; Ru(η-C6Me6), 11(CF3SO3)2) were synthesized by stacking reactions of Cp*Fe(η-C5H5BMe) (2) with the corresponding half-sandwich fragments [ML]2+. The structure of 10(CF3SO3)2 was determined by X-ray diffraction study.  相似文献   

20.
Heterometallic Complexes with E6 Ligands (E = P, As) The reaction of [Cp*Co(μ-CO)]2 1 with the sandwich complexes [Cp*Fe(η5-E5)] 2 a: E = P, 2 b: E = As in decalin at 190°C affords besides [CpCo2E4] 4: E = P, 7: E = As and [CpFe2P4] 5 the trinuclear complexes [(Cp*Fe)2(Cp*Co)(μ-η2-P2)(μ31:2:1-P2)2] 3 as well as [(Cp*Fe)2(Cp*Co)(μ32:2:2-As3)2] 6 . With [Mo(CO)5(thf)] 3 and 6 form in a build-up reaction the tetranuclear clusters [(Cp*Fe)2(Cp*Co)E6{Mo(CO)3}] 10: E = P, 11: E = As. 3, 6 and 11 have been further characterized by an X-ray crystal structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号