首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alkylative carboxylation of allenamide catalyzed by an N‐heterocyclic carbene (NHC)–copper(I) complex [(IPr)CuCl] with CO2 and dialkylzinc reagents was investigated. The reaction of allenamides with dialkylzinc reagents (1.5 equiv) and CO2 (1 atm.) proceeded smoothly in the presence of a catalytic quantity of [(IPr)CuCl] to afford (Z)‐α,β‐dehydro‐β‐amino acid esters in good yields. The reaction is regioselective, with the alkyl group introduced onto the less hindered γ‐carbon, and the carboxyl group introduced onto the β‐carbon atom of the allenamides. The first step of the reaction was alkylative zincation of the allenamides to give an alkenylzinc intermediate followed by nucleophilic addition to CO2. A variety of cyclic and acyclic allenamides were found to be applicable to this transformation. Dialkylzinc reagents bearing β‐hydrogen atoms, such as Et2Zn or Bu2Zn, also gave the corresponding alkylative carboxylation products without β‐hydride elimination. The present methodology provides an easy route to alkyl‐substituted α,β‐dehydro‐β‐amino acid ester derivatives under mild reaction conditions with high regio‐ and stereoselectivtiy.  相似文献   

2.
Alkylative carboxylation of ynamides with CO2 and dialkylzinc reagents using a N‐heterocyclic carbene (NHC)–copper catalyst has been developed. A variety of ynamides, both cyclic and acyclic, undergo this transformation under mild conditions to afford the corresponding α,β‐unsaturated carboxylic acids, which contain the α,β‐dehydroamino acid skeleton. The present alkylative carboxylation formally consists of Cu‐catalyzed carbozincation of ynamides with dialkylzinc reagents with the subsequent nucleophilic carboxylation of the resulting alkenylzinc species with CO2. Dialkylzinc reagents bearing a β‐hydrogen atom such as Et2Zn and Bu2Zn still afford the alkylated products despite the potential for β‐hydride elimination. This protocol would be a desirable method for the synthesis of highly substituted α,β‐ dehydroamino acid derivatives due to its high regio‐ and stereoselectivity, simple one‐pot procedure, and its use of CO2 as a starting material.  相似文献   

3.
A straightforward and transition‐metal‐free approach for the efficient synthesis of α‐arylglycine derivatives from aromatic imines and carbon dioxide was enabled by an umpolung carboxylation reaction. Various substituted diphenylmethimines underwent the carboxylation smoothly with carbon dioxide in the presence of potassium tert‐butoxide and 18‐crown‐6 to give the corresponding carboxylated products in good to high yields. Besides the enhancement of the solubility of potassium tert‐butoxide in THF, 18‐crown‐6 also plays key roles in suppressing the reverse protonation or 1, 3‐proton shift isomerization as well as by stabilizing the carboxylated intermediate.  相似文献   

4.
Various allylic alcohols were carboxylated in the presence of a catalytic amount of PdCl2 and PPh3 using ZnEt2 as a stoichiometric transmetalation agent under a CO2 atmosphere (1 atm). This carboxylation proceeded in a highly regioselective manner to afford branched carboxylic acids predominantly. The β,γ‐unsaturated carboxylic acid thus obtained was successfully converted into an optically active γ‐butyrolactone, a known intermediate of (R)‐baclofen.  相似文献   

5.
6.
The reaction of β‐ and γ‐haloamines with carbon dioxide to give pharmaceutically relevant 2‐oxazolidinones and 1,3‐dioxazin‐2‐ones, was found to proceed efficiently in the presence of a base and in the absence of catalyst. After optimization of reaction conditions, the system was successfully expanded to a variety of haloamines, even at multigram scale. The reaction was further studied in silico by DFT calculations.  相似文献   

7.
The development of versatile catalyst systems and new transformations for the utilization of carbon dioxide (CO2) is of great interest and significance. This Personal Account reviews our studies on the exploration of the reactions of CO2 with various substrates by the use of N‐heterocyclic carbene (NHC)‐copper catalysts. The carboxylation of organoboron compounds gave access to a wide range of carboxylic acids with excellent functional group tolerance. The C?H bond carboxylation with CO2 emerged as a straightforward protocol for the preparation of a series of aromatic carboxylic esters and butenoates from simple substrates. The hydrosilylation of CO2 with hydrosilanes provided an efficient method for the synthesis of silyl formate on gram scale. The hydrogenative or alkylative carboxylation of alkynes, ynamides and allenamides yielded useful α,β‐unsaturated carboxylic acids and α,β‐dehydro amino acid esters. The boracarboxylation of alkynes or aldehydes afforded the novel lithium cyclic boralactone or boracarbonate products, respectively. The NHC‐copper catalysts generally featured excellent functional group compatibility, broad substrate scope, high efficiency, and high regio‐ and stereoselectivity. The unique electronic and steric properties of the NHC‐copper units also enabled the isolation and structural characterization of some key intermediates for better understanding of the catalytic reaction mechanisms.  相似文献   

8.
The sequential hydroalumination or methylalumination of various alkynes catalyzed by different catalyst systems, such those based on Sc, Zr, and Ni complexes, and the subsequent carboxylation of the resulting alkenylaluminum species with CO2 catalyzed by an N‐heterocyclic carbene (NHC)–copper catalyst have been examined in detail. The regio‐ and stereoselectivity of the overall reaction relied largely on the hydroalumination or methylalumination reactions, which significantly depended on the catalyst and alkyne substrates. The subsequent Cu‐catalyzed carboxylation proceeded with retention of the stereoconfiguration of the alkenylaluminum species. All the reactions could be carried out in one‐pot to afford efficiently a variety of α,β‐unsaturated carboxylic acids with well‐controlled configurations, which are difficult to construct by previously reported methods. This protocol could be practically useful and attractive because of its high regio‐ and stereoselectivity, simple one‐pot reaction operation, and the use of CO2 as a starting material.  相似文献   

9.
Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro‐/photo‐)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2. In this study, nucleophilic activation of CO2 by complex [(NO)2Fe(μ‐MePyr)2Fe(NO)2]2? ( 2 , MePyr=3‐methylpyrazolate) results in the formation of CO2‐captured complex [(NO)2Fe(MePyrCO2)]? ( 2‐CO2 , MePyrCO2=3‐methyl‐pyrazole‐1‐carboxylate). Single‐crystal structure, spectroscopic, reactivity, and computational study unravels 2‐CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+. Moreover, sequential reaction of 2 with CO2, Ca(OTf)2, and KC8 established a synthetic cycle, 2 → 2‐CO2 → [(NO)2Fe(μ‐MePyr)2Fe(NO)2] ( 1 ) → 2 , for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2‐CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2.  相似文献   

10.
Nickel(0)‐promoted carboxylation of aryl ynol ether proceeded in a highly regioselective manner to produce α‐substituted‐β‐aryloxyacrylic acid derivatives. The α‐substituted‐β‐aryloxyacrylic acids were transformed into the corresponding β‐aryloxypropionic acid derivative as an optically active form via rhodium‐catalyzed asymmetric hydrogenation.  相似文献   

11.
Depending on the amount of methanol present in solution, CO2 adducts of N‐heterocyclic carbenes (NHCs) and N‐heterocyclic olefins (NHOs) have been found to be in fully reversible equilibrium with the corresponding methyl carbonate salts [EMIm][OCO2Me] and [EMMIm][OCO2Me]. The reactivity pattern of representative 1‐ethyl‐3‐methyl‐NHO–CO2 adduct 4 has been investigated and compared with the corresponding NHC–CO2 zwitterion: The protonation of 4 with HX led to the imidazolium salts [NHO–CO2H][X], which underwent decarboxylation to [EMMIm][X] in the presence of nucleophilic catalysts. NHO–CO2 zwitterion 4 can act as an efficient carboxylating agent towards CH acids such as acetonitrile. The [EMMIm] cyanoacetate and [EMMIm]2 cyanomalonate salts formed exemplify the first C?C bond‐forming carboxylation reactions with NHO‐activated CO2. The reaction of the free NHO with dimethyl carbonate selectively led to methoxycarbonylated NHO, which is a perfect precursor for the synthesis of functionalized ILs [NHO–CO2Me][X]. The first NHO‐SO2 adduct was synthesized and structurally characterized; it showed a similar reactivity pattern, which allowed the synthesis of imidazolium methyl sulfites upon reaction with methanol.  相似文献   

12.
过渡金属催化CO2参与的不饱和烃还原羧化反应是合成羧酸及丙烯酸类化合物的重要途径, 具有重要的研究价值和工业应用潜力.过渡金属试剂与不饱和烃、CO2生成稳定的金属杂环内酯或金属羧酸盐.还原剂能够与金属杂环内酯或金属羧酸盐发生转金属作用, 重新生成活泼催化剂, 从而实现催化剂的循环利用.本文总结了还原剂, 包括有机金属试剂、硅烷、硼烷、金属粉末、甲醇和氢气等在不饱和烃与CO2的还原羧化反应中的应用, 并着重描述其反应特点和反应机理.  相似文献   

13.
《中国化学》2018,36(5):399-405
A silver‐catalyzed three‐component coupling reaction of carbon dioxide, amines and α‐diazoesters has been developed for the first time. The novel reaction provides an efficient and practical methodology for the synthesis of a wide range of new α‐carbamoyloxy esters, which are difficult to prepare by existing methods. The advantages of the method include the use of readily available starting materials, simple catalytic system, good atom economy and high functional group tolerance.  相似文献   

14.
Highly active bifunctional diporphyrin and triporphyrin catalysts were synthesized through Stille coupling reactions. As compared with a porphyrin monomer, both exhibited improved catalytic activities for the reaction of CO2 with epoxides to form cyclic carbonates, because of the multiple catalytic sites which cooperatively activate the epoxide. Catalytic activities were carefully investigated by controlling temperature, reaction time, and catalyst loading, and very high turnover number and turnover frequency were obtained: 220 000 and 46 000 h?1, respectively, for the magnesium catalyst, and 310 000 and 40 000 h?1, respectively, for the zinc catalyst. Results obtained with a zinc/free‐base hybrid diporphyrin catalyst demonstrated that the Br? ions on the adjacent porphyrin moiety also function as nucleophiles.  相似文献   

15.
The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon‐based fuels or attractive feedstock. Single‐atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen‐anchored Zn single‐atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FECO) up to 95 % at ?0.43 V), remarkable durability (>75 h without decay of FECO), and large turnover frequency (TOF, up to 9969 h?1). Further experimental and DFT results indicate that the four‐nitrogen‐anchored Zn single atom (Zn‐N4) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate‐limiting step.  相似文献   

16.
17.
18.
19.
CoII‐substituted α‐Keggin‐type 12‐tungstenphosphate [(n‐ C4H9)4N]4H[PW11Co(H2O)O39]‐ (PW11Co) is synthesized and used as a single‐component, solvent‐free catalyst in the cycloaddition reaction of CO2 and epoxides to form cyclic carbonates. The mechanism of the cycloaddition reaction is investigated using DFT calculations, which provides the first computational study of the catalytic cycle of polyoxometalate‐catalyzed CO2 coupling reactions. The reaction occurs through a single‐electron transfer from the doublet CoII catalyst to the epoxide and forms a doublet CoIII–carbon radical intermediate. Subsequent CO2 addition forms the cyclic carbonate product. The existence of radical intermediates is supported by free‐radical termination experiments. Finally, it is exhilarating to observe that the calculated overall reaction barrier (30.5 kcal mol?1) is in good agreement with the real reaction rate (83 h?1) determined in the present experiments (at 150 °C).  相似文献   

20.
Hydrogel films composed of temperature‐responsive microgel particles (GPs) containing amine groups work as stimuli‐responsive carbon dioxide absorbent with a high capacity of approximately 1.7 mmol g?1. Although the dried films did not show significant absorption, the reversible absorption capacity dramatically increased by adding a small amount of water (1 mL g?1). The absorption capacity was independent of the amount of added water beyond 1 mL g?1, demonstrating that the GP films can readily be used under wet conditions. The amount of CO2 absorbed by the GP films was proportional to their thickness up to 200–300 μm (maximum capacity of about 2 L m?2). Furthermore, the films consisting of GPs showed faster and greater absorption and desorption of CO2 than that of monolithic hydrogel films. These results indicated the importance of a fast stimulus response rate of the films that are composed of GPs in order to achieve long‐range and fast diffusion of bicarbonate ions. Our study revealed the potential of stimuli‐responsive GP films as energy‐efficient absorbents to sequester CO2 from high‐humidity exhaust gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号