首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A facile templated synthesis of functional nanocarbon materials with well‐defined spherical mesopores is developed using all‐organic porogenic precursors comprised of hairy nanoparticles with nitrogen‐rich polyacrylonitrile shells grafted from sacrificial cross‐linked poly(methyl methacrylate) cores (xPMMA‐g‐PAN). Such shape‐persistent all‐organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes.  相似文献   

2.
We synthesized new polynorbornene dicarboximide (PCaNI) functionalized with hole‐transporting carbazole moieties and its copolymer (PCaNA) by ring‐opening metathesis polymerization (ROMP), where the PCaNA was further reacted with 3‐amino‐triethoxysilane to prepare PCaNI/silica hybrid. We also investigated the feasibility of PCaNI and PCaNI/silica hybrid (PCaSi) as a hole‐transporting material for hybrid organic light emitting devices (HOLEDs). To improve the performance of the PCaNI‐based HOLEDs, N,N′‐diphenyl‐N,N′‐(3‐methylphenyl)‐[1,1′‐biphenyl]‐4‐4′‐diamine (TPD) was also introduced into the PCaNI matrix. Results showed that PCaNI exhibited high glass transition temperature (~260 °C) and high optical transparency in the visible region. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PCaNI were measured as 5.6 and 2.2 eV, while the TPD‐doped PCaNI showed 5.7 eV (HOMO) and 2.6 eV (LUMO). The PCaNI/silica hybrid nanolayers showed excellent solvent resistance due to the formation of covalent bonds between ITO and PCaNI. The HOLEDs with PCaNI/TPD or PCaSi/TPD hybrid nanolayers exhibited relatively higher luminance (~10,000 cd/m2), lower operating voltage (~6.5 V at 300 cd/m2), and higher current efficiency (~2.7 cd/A). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs.  相似文献   

4.
Silica particles with different morphology have been functionalized with carbon shells by different synthetic procedures. In the key step, the bare silica particles are functionalized by a specific cationic surface polymerization with furfuryl alcohol (FA). The polyfurfuryl alcohol (PFA)/silica hybrid particles have been also post-functionalized with maleic anhydride (MSA) by a Diels Alder reaction. Simultaneously occuring cationic polymerization of FA and sol-gel process with TEOS has been used for producing interpenetrating carbon-silica hybrid materials. The thermal transformation of the PFA component on silica into the carbon phase has been carried out under argon atmosphere in a temperature range from 700°C to 900°C. The influence of the former morphology of the silica on the homogenity of the resulting carbon layer is shown by zetapotential measurements and electron microscopic investigations.  相似文献   

5.
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.

Image from optical microscope of hybrid nanoparticle membrane of SiO2g‐PS with hexagonally‐ordered pores.  相似文献   


6.
The functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were obtained by Friedel–Crafts acylation, which introduced aromatic amine groups onto the sidewall. And the grafted yield was adjusted by controlling the concentration of the catalyst. The composite solutions containing f‐MWCNTs and polyacrylonitrile (PAN) were then prepared by in‐situ or ex‐situ solution polymerization. The resulting solutions were electrospun into composite nanofibers. In the in‐situ polymerization, morphological observation revealed that f‐MWCNTs was uniformly dispersed along the axes of the nanofibers and increased interfacial adhesion between f‐MWCNTs and PAN. Furthermore, two kinds of f‐MWCNTs/PAN composite nanofibers had a higher degree of crystallization and a larger crystal size than PAN nanofibers had, so the specific tensile strengths and modulus of the composite nanofibers were enhanced. And the thermal stability of f‐MWCNTs/PAN from in‐situ method was higher than that of ex‐situ system. When the f‐MWCNTs content was less than 1 wt%, the specific tensile strengths and modulus of nanofibers were enhanced with increase in the amounts of f‐MWCNTs, and f‐MWCNTs/PAN of in‐situ system provided better mechanical properties than that of ex‐situ system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Bianjing Si  Jie Zhou 《中国化学》2011,29(11):2487-2494
Based on a molecularly imprinted organic‐silica hybrid‐based stir bar, a pre‐treatment methodology was developed for enrichment of nicosulfuron in aqueous samples. The molecularly imprinted organic‐silica hybrid‐based coating on the outer surface of a glass stir bar was prepared by in‐situ polymerization using nicosulfuron as a template molecule, α‐methacrylic acid as a functional monomer, methacryloxypropytrimethoxysilane as a cross‐linker in the mixture of acetonitrile and trichloromethane (V/V, 7.5:1). To achieve the selective extraction of the target analyte from aqueous samples, several main parameters, including extraction time, pH value and contents of inorganic salt in the sample matrix were investigated. Evidence was also presented by the scanning electronic microscopic images of the imprinted and non‐imprinted stir bars. Then, the extraction efficiency of the stir bar was tested with separate experiments and competitive sorption experiments. These results showed that using six sulfonylureas as substrates the molecularly imprinted organic‐silica hybrid‐based stir bar gave high selectivity for the template, nicosulfuron compared to the non‐imprinted organic‐silica hybrid‐based stir bar. This sorption extraction was coupled to liquid chromatography ultraviolet detection allowing the determination of nicosulfuron from tap water. The method showed good recoveries and precision, 96.0% (RSD 2.7%, n=3) for tap water spiked with 0.125 nmol (25.00 mL sample), suggesting that the stir bar can be successfully applied to the pre‐concentration of nicosulfuron in real aqueous samples.  相似文献   

8.
We present a simple and fast method for the synthesis of polyacrylates-silica hybrid materials with significantly low volume shrinkages through the sol-gel reactions of tetraethyl orthosilicate and 2-hydroxyethyl methacrylate along with the free-radical polymerization of the acrylate monomer. The volume shrinkage from the processible sol to the final product was about 6–20% for the hybrid materials having the silica contents up to about 50 wt-%. As a result of the low shrinkage, crack-free, transparent and monolithic hybrid materials of relatively large sizes can be prepared within a short period of 6 to 12 hours. The formation of covalent bonding between the organic and the silica components in the hybrid materials was demonstrated. Thermal stability of the polyacrylate component in the hybrid materials were found to be higher than that of the bulk polymer. Other vinyl polymers such as poly(methyl methacrylate) and polyacrylonitrile have also been incorporated into the inorganic silica sol-gel matrix by using this method.  相似文献   

9.
Sn(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) with carbon tetrachloride (CCl4) as initiator and hexamethylenetetramine (HMTA) as ligand in N, N‐dimethylformamide (DMF) was studied. The polymerization obeyed first order kinetic. The molecular weight of polyacrylonitrile (PAN) increased linearly with monomer conversion and PAN exhibited narrow molecular weight distributions. Increasing the content of Sn(0) resulted in an increase in the molecular weight and the molecular weight distribution. Effects of ligand and initiator were also investigated. The block copolymer PAN‐b‐polymethyl methacrylate with molecular weight at 126,130 and polydispersity at 1.36 was successfully obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Polyacrylonitrile (PAN) was grafted from surfaces of chloro‐modified silica‐gel with their surface chlorines as initiation sites, using an iron (III)‐mediated surface‐initiated atom transfer radical polymerization (ATRP) with activators regenerated by electron transfer (SI‐ARGET ATRP) method. The graft reaction exhibits first‐order kinetics with respect to the polymerization time in the low‐monomer‐conversion stage. The conversion of monomer (C%) and the percentage of grafting (PG%) increased with increasing of the polymerizing time and reached 23 and 730% after a polymerizing time of 24 hr, respectively. Hydroxylamine (NH2OH·HCl) was used to modify the cyano groups of SG‐g‐PAN to obtain amidoxime (AO) groups. The AO SG‐g‐PAN was used to remove Hg2+. The adsorption kinetics indicated that the pseudo‐second‐order model was more suitable to describe the adsorption kinetics of AO SG‐g‐PAN for Hg2+. The adsorption isotherms demonstrated that Langmuir model was much better than Freundlich model to describe the isothermal process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A pyridinium‐based immobilized ionic liquid type multifunctional hybrid silica monolith was prepared by the in situ polymerization of 3‐chloropropyl‐silica matrix and 4,4′‐dipyridyl for hydrophilic interaction CEC. The obtained hybrid monolith possessed of high stable skeletal microstructures with obviously hydrophilic retention mechanism under ACN content >50% in the mobile phase. Strong and stable anodic EOF could be observed under a broad pH range from pH 3.0 to 9.0. Due to the immobilized dipyridyl groups bonded to the silica matrix surface, the resulting hydrophilic hybrid monolith possessed multiple separation interactions including hydrogen bond, π–π, and anion exchange. Excellent separations of various polar analytes including electroneutral phenols, charged acid nucleotides, and basic analytes were successfully achieved. The highest column efficiencies up to 120 000, 164 000, and 106 000 plates/m were obtained for nucleotides, nucleic acid bases, and nucleosides and nicotines, respectively. These results demonstrated that the dipyridyl‐immobilized ionic liquid functionalized hybrid monolith possessed highly mechanical stability and good chromatographic performance for hydrophilic interaction electrochromatography.  相似文献   

12.
We report on a new strategy for fabricating well‐defined POSS‐based polymeric materials with and without solvent by frontal polymerization (FP) at ambient pressure. First, we functionalize polyhedral oligomeric silsesquioxane (POSS) with isophorone diisocyanate (IPDI). With these functionalized POSS‐containing isocyanate groups, POSS can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP in situ. Constant velocity FP is observed without significant bulk polymerization. The morphology and thermal properties of POSS‐based hybrid polymers prepared via FP are comparatively investigated on the basis of scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). Results show that the as‐prepared POSS‐based polymeric materials exhibit a higher glass transition temperature than that of pure PNMA, ascribing to modified POSS well‐dispersed in these hybrid polymers. Also, the products with different microstructures display different thermal properties. The pure PNMA exhibits a featureless morphology, whereas a hierarchical morphology is obtained for the POSS‐based polymeric materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1136–1147, 2009  相似文献   

13.
In this study, we reported the synthesis of polyacrylonitrile (PAN) via living radical polymerization in N, N‐dimethylformamide using carbon tetrachloride as initiator, copper(II) chloride (CuCl2)/hexamethylenetetramine as catalyst system, and 2,2‐azobisisobutyronitrile as a high concentration of thermal radical initiator. The polymerization proceeded in controlled/living manner as indicated by first‐order kinetics of the polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion and narrow polydispersity. Higher polymerization rate and narrower molecular weight distributions were observed with CuCl2 less than 50 ppm. The rate of polymerization showed a trend of increase along with temperature. The modified PAN containing amidoxime group was used for extraction of Ag(I) ions from aqueous solutions. The adsorption kinetics data indicated that the adsorption process followed pseudo‐second‐order rate model. The isotherm adsorption process could be described by the Freundlich isotherm model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Organic–inorganic hybrid particles have many potential applications, but almost all research has been focused on hybrid particles with one kind of inorganic nanoparticle. This article presents a novel and facile preparation approach for raspberry‐like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. In this method, larger, surface‐modified silica particles are first dispersed into monomer droplets to form a miniemulsion, and then raspberry‐like silica/polystyrene/silica multilayer hybrid particles are directly obtained when miniemulsion polymerization is performed in the presence of smaller, unmodified silica particles with 4‐vinylpyridine as an auxiliary monomer. Influential parameters such as the amount of 4‐vinylpyridine, the surfactant concentration, and the pH value of the system have been investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1028–1037, 2007  相似文献   

15.
The preparation of well‐defined polyisoprene‐grafted silica nanoparticles (PIP‐g‐SiO2 NPs) was investigated. Surface initiated reversible addition fragmentation chain transfer (SI‐RAFT) polymerization was used to polymerize isoprene from the surface of 15 nm silica NPs. A high temperature stable trithiocarbonate RAFT agent was anchored onto the surface of particles with controllable graft densities. The polymerization of isoprene mediated by silica anchored RAFT with different densities were investigated and compared to the polymerization mediated by free RAFT agents. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI‐RAFT polymerization were also investigated. Using this technique, block copolymers of polyisoprene and polystyrene on the surface of silica particles were also prepared. The well‐defined synthesized PIP‐g‐SiO2 NPs were then mixed with a polyisoprene matrix which showed a good level of dispersion throughout the matrix. These tunable grafted particles have potential applications in the field of rubber nanocomposites. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1493–1501  相似文献   

16.
Phosphorus‐containing epoxy‐based epoxy–silica hybrid materials with a nanostructure were obtained from bis(3‐glycidyloxy)phenylphosphine oxide, diaminodiphenylmethane, and tetraethoxysilane in the presence of the catalyst p‐toluenesulfonic acid via an in situ sol–gel process. The silica formed on a nanometer scale in the epoxy resin was characterized with Fourier transform infrared, NMR, and scanning electron microscopy. The glass‐transition temperatures of the hybrid epoxy resins increased with the silica content. The nanometer‐scale silica showed an enhancement effect of improving the flame‐retardant properties of the epoxy resins. The phosphorus–silica synergistic effect on the limited oxygen index (LOI) enhancement was also observed with a high LOI value of 44.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 986–996, 2001  相似文献   

17.
An acrylic–silica hybrid polymeric nanocomposite, comprising well‐distributed silica nanoparticles in acrylic matrix, has been synthesized at a markedly rapid rate from a dendritic acrylic oligomer (DAO) and an acrylic‐functionalized silica (A‐silica) via UV‐curing. A‐silica was made by functioning colloidal silica nanoparticles with 3‐methacryloxypropyltrimethoxysilane (MATMS) and DAO was formed by reacting 1,5‐diamino‐2‐methylpentane (MPMDA) with trimethylopropane triacrylate (TMPTA). The MATMS has been found either doubly or singly bonded to silica nanoparticles but not triply bonded, and the inclusion of MATMS into the siloxane network structure increases the size of silica nanoparticles. The well distribution of A‐silica and its good compatibility with DAO cause an increase in Td of the acrylic–silica hybrid material. Silica nanoparticles are too small to cause any significant light scattering, and do not have deleterious effects on transparency. The “hybrid‐on‐polyethylene terephathalate” films exhibited satisfactory hardness and surface roughness because of silica nanoparticles. The preparation as well as the characterization of the constituting species and the final hybrid material are described in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8149–8158, 2008  相似文献   

18.
High performance polyacrylonitrile (PAN) was prepared with Mg powder as both reducing agent (RA) and supplemental activator (SA) by single electron transfer‐living radical polymerization (RASA SET‐LRP). First‐order kinetics of polymerization with respect to monomer concentration, linear increase of molecular weight, and narrow polydispersity with monomer conversion, and the obtained high isotacticity PAN indicate that RASA SET‐LRP in the presence of Mg powder could simultaneously control molecular weight and tacticity of PAN. compared with that obtained with ascorbic acid (VC) as RA, an obvious increase in isotacticity of PAN was observed. the block copolymer pan‐b‐pAN with molecular weight at 112,460, polydispersity at 1.33, and isotacticity at 0.314 was successfully prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3328–3332  相似文献   

19.
A series of superhydrophobic poly(methacryloxypropyltrimethoxysilane, MPTS‐b‐2,‐2,3,3,4,4,4‐heptafluorobutyl methacrylate, HFBMA)‐grafted silica hybrid nanoparticles (SiO2/PMPTS‐b‐PHFBMA) were prepared by two‐step surface‐initiated atom transfer radical polymerization (SI‐ATRP). Under the adopted polymerization conditions in our previous work, the superhydrophobic property was found to depend on the SI‐ATRP conditions of HFBMA. As a series of work, in this present study, the effects of polymerization conditions, such as the initiator concentration, the molar ratio of monomer and initiator, and the polymerization temperature on the SI‐ATRP kinetics and the interrelation between the kinetics and the surface properties of the nanoparticles were investigated. The results showed that the SI‐ATRP of HFBMA was well controlled. The results also showed that both the surface microphase separation and roughness of the hybrid nanoparticles could be strengthened with the increase of the molecular weight of polymer‐grafted silica hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Tin anode materials have attracted much attention owing to their high theoretical capacity, although rapid capacity fade is commonly observed mainly because of structural degradation resulting from volume expansion. Herein, we report a versatile strategy based on a basil seed inspired design for constructing a monodisperse core–shell Sn@C hybrid confined in a carbon matrix (Sn basil seeds). Analogous to the structure of basil seeds soaked in water, Sn basil seeds are used to tackle the volume expansion problem in lithium‐ion batteries. Monodisperse Sn cores are encapsulated by a thick carbon layer, which thus lowers the electrolyte contact area. The obtained Sn basil seeds are closely packed to construct a framework that supplies fast electron transport and provides a reinforced mechanical backbone. As a consequence, an ensemble of this hybrid network shows significantly enhanced lithium‐storage performance with a high capacity of 870 mAh g?1 at a current density of 0.4 A g?1 over 600 cycles. After the intense cycling, the Sn cores transform into ultrafine nanocrystals with sizes of 3–6 nm. The structural and morphological evolution of the Sn cores can reasonably explain the gradual increase in the capacity and the long‐term cycling ability of our Sn basil seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号