共查询到20条相似文献,搜索用时 15 毫秒
1.
Prof. Dr. Holger Braunschweig Prof. Dr. Frank Breher Sabrina Capper Dipl.‐Chem. Klaus Dück Dr. Marco Fuß Dr. J. Oscar C. Jimenez‐Halla Dr. Ivo Krummenacher Dr. Thomas Kupfer Dr. Dominik Nied Dr. Krzysztof Radacki 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(1):270-281
The synthesis of ansa complexes has been studied intensively owing to their importance as homogeneous catalysts and as precursors of metal‐containing polymers. However, paramagnetic non‐metallocene derivatives are rare and have been limited to examples with vanadium and titanium. Herein, we report an efficient procedure for the selective dilithiation of paramagnetic sandwich complex [Cr(η5‐C5H5)(η6‐C6H6)], which allows the preparation of a series of [n]chromoarenophanes (n=1, 2, 3) that feature silicon, germanium, and tin atoms at the bridging positions. The electronic and structural properties of these complexes were probed by X‐ray diffraction analysis, cyclic voltammetry, and by UV/Vis and EPR spectroscopy. The spectroscopic parameters for the strained and less strained complexes (i.e., with multiple‐atom linkers) indicate that the unpaired electron resides primarily in a d orbital on chromium(I); this result was also supported by density functional theory (DFT) calculations. We did not observe a correlation between the experimental UV/Vis and EPR data and the degree of molecular distortion in these ansa complexes. The treatment of tin‐bridged complex [Cr(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] results in the non‐regioselective insertion of the low‐valent Pt0 fragment into the Cipso? Sn bonds in both the five‐ and six‐membered rings, thereby furnishing a bimetallic complex. This observed reactivity suggests that ansa complexes of this type are promising starting materials for the synthesis of bimetallic complexes in general and also underline their potential to undergo ring‐opening processes to yield new metal‐containing polymers. 相似文献
2.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)2(η1‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)2(η2‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses. 相似文献
3.
4.
Deprotonation of the readily available organometallic aldehyde derivative [(η4‐C7H7CHO)Fe(CO)3] ( 2 ) with NaN(SiMe3)2 in benzene solution at ambient temperature afforded the anionic formylcycloheptatrienyl complex Na[(η3‐C7H6CHO)Fe(CO)3] ( 3 ). The anion is fluxional in solution and displays a unique ambident reactivity towards electrophiles (MeI, Me3SiCl). New substituted [(η4‐RC7H6CHO)Fe(CO)3] and [(η4‐heptafulvene)Fe(CO)3] complexes have been identified as the products. Treatment of 3 with 0.5 equivalents of dimeric [(COD)RhCl]2 (COD = 1,5‐cyclooctadiene) afforded the functionalized Fe‐Rh cycloheptatrienyl complex [(μ‐C7H6CHO)(CO)3FeRh(COD)] ( 7 ) in up to 86 % yield. Carbonylation of 7 under an atmosphere of CO led to facile conversion to the heterobimetallic pentacarbonyl derivative [(μ‐C7H6CHO)(CO)3FeRh(CO)2] ( 8 ), which is also accessible in lower yield from the direct reaction of 3 with [Rh(CO)2Cl]2. 相似文献
5.
6.
7.
Two special manganese complexes [Mn(II)(acac?)2(4,4′‐bipy)]n (bipy=4,4′‐bipyridine) (complex 1 ) and [Mn(III)(acac?)3]·4CO(NH2)2 (acacH=acetylacetone) (complex 2 ) were synthesized in the same strategy by solvothermal method. Single crystal X‐ray diffraction revealed the complex 1 consists of one‐dimensional infinite coordination chain, with the manganese centers bridged by 4,4′‐bipy. And free carbamides of complex 2 connect with each other through the hydrogen bonds to form a 14‐membered carbamide ring and a zig‐zag plane. Both enantiomers of Mn(III)(acac?)3 exist in the structure, forming a racemate. Furthermore, these enantiomers and those zig‐zag planes are linked with hydrogen bonds to form an unique spatial network. 相似文献
8.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å. 相似文献
9.
10.
Qutaiba Abu‐Salem Cäcilia Maichle‐Mößmer Elke Niquet Norbert Kuhn Prof. Dr. 《无机化学与普通化学杂志》2008,634(14):2463-2465
1,3‐Dimethylcyanuric acid (DMCH) forms on deprotonation and reaction with TlF its thallous salt Tl[DCM] ( 2 ) which is converted to the phosphonium salt [PPh4][DCM] ( 3 ). On the reaction with M(CO)6, the pentacarbonylmetalate salts [Ph4P][(DMC)M(CO)5], M = Cr ( 4a ), Mo ( 4b ) and W ( 4c ) are obtained. IR and NMR data of 4 reveal the DMC anion ( 1 ) to have coordination properties similar to those of pyridine. The crystal structures of 4a and 4c are reported. 相似文献
11.
Two new Complexes(Cp)2Ti(Cin)2and (CP2)Ti(Tzea)2(CP=Cyclopentadienyl η^5-C5H5)have been synthesized in THF by the reaction of HCin(Cincofen,2-phenylquinoline-4-carboxylic acid)or HTzea(5-phenyltetrazolyl-2-ethanoic acid)with(Cp)2TiCl2,and characterized by elemental analyses,IR,1H NMR and 13C NMR,UV spectra,molar conductivity,TGDTA.In the complexes the carboxyl groups are coordinated to Ti(IV)in a monodentate manner,The inhibitory actions of the complexes on mice ear tumefaction caused by croton oil and the rat foot granulation growth produced by cotton wool are higher than those of the corresponding ligands HCin,HTzea and [(Cp)2TiCl2],while their toxicities are lower than those of the free ligands.ηη 相似文献
12.
13.
Hans‐Christian Bttcher Marion Graf Kurt Merzweiler Christoph Wagner 《无机化学与普通化学杂志》2001,627(12):2657-2662
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)2(μ3‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)2(μ3‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster. 相似文献
14.
Brette M. Chapin Lauren D. Hughs James A. Golen Arnold L. Rheingold Adam R. Johnson 《Acta Crystallographica. Section C, Structural Chemistry》2010,66(7):m191-m193
The title complex, [Ti(C5H5)(C2H6N)2Cl], exhibits two nearly planar dimethylamide groups oriented approximately perpendicular to each other. The Ti→cyclopentadienyl centroid vector lies nearly in the plane of one of the dimethylamide groups. Long‐range contacts between Ti—Cl and cyclopentadienyl H—C groups give rise to geometric ordering in the extended solid. 相似文献
15.
Il Kim Jia‐Min Zhou Hoeil Chung 《Journal of polymer science. Part A, Polymer chemistry》2000,38(9):1687-1697
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000 相似文献
16.
17.
18.
19.
Zirconium Allyl Complexes as Participants in Zirconocene‐Catalyzed α‐Olefin Polymerizations 下载免费PDF全文
Dr. Dmitrii E. Babushkin Dr. Valentina N. Panchenko Prof. Dr. Hans‐Herbert Brintzinger 《Angewandte Chemie (International ed. in English)》2014,53(36):9645-9649
In a search for the hitherto elusive catalyst resting state(s) of zirconocene‐based olefin polymerization catalysts, a combination of UV/Vis and NMR spectrometric methods reveals that polymer‐carrying cationic Zr allyl complexes make up about 90 % of the total catalyst concentration. Other catalyst species that take part in the polymerization process have to be generated from this allyl pool into which they appear to relapse rather frequently. 相似文献
20.
Ting‐Ting Wang Ji‐Min Xie Prof. Dr. Chang‐Kun Xia Yun‐Long Wu Jun‐Jie Jing 《无机化学与普通化学杂志》2010,636(8):1580-1584
Two manganese(III)‐dicyanamide compounds, [Mn(5‐Brsalen)(dca)] · CH3OH ( 1 ) and [Mn(3‐Meosalphen)(dca)(H2O)] ( 2 ) (dca = dicyanamide anion, [N(CN)2]–), were synthesized and characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray structure analysis, and cyclic voltammetry. The structure of complex 1 is an infinite zigzag chain of hexacoordinate MnIII ions, in which the adjacent manganese atoms are connected by dca in μ1,5‐bridging mode. The molecular structure of complex 2 consists of a hexacoordinate MnIII atom, which generates a slightly distorted octahedral arrangement, and a dimer structure is formed by intermolecular hydrogen bonding interactions. The electrochemical properties of the two complexes were measured by cyclic voltammetry. 相似文献