首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The construction and precise control of the face‐to‐face π‐stacked arrangements of anthracene fluorophores in the crystalline state led to a remarkable red shift in the fluorescence spectrum due to unprecedented excited oligomer formation. The arrangements were regulated by using organic salts including anthracene‐1,5‐disulfonic acid (1,5‐ADS) and a variety of aliphatic amines. Because of the smaller number of hydrogen atoms at the edge positions and the steric effect of the sulfonate groups, 1,5‐ADS should prefer face‐to‐face π‐stacked arrangements over the usual edge‐to‐face herringbone arrangement. Indeed, as the alkyl substituents were lengthened, the organic salts altered their anthracene arrangement to give two‐dimensional (2D) edge‐to‐face and end‐to‐face herringbone arrangements, one‐dimensional (1D) face‐to‐face zigzag and slipped stacking arrangements, a lateral 1D face‐to‐face arrangement like part of a brick wall, and a discrete monomer arrangement. The monomer arrangement behaved as a dilute solution even in the close‐packed solid state to emit deep blue light. The 1D face‐to‐face zigzag and slipped stacking of the anthracene fluorophores caused a red shift of 30–40 nm in the fluorescence emission with respect to the discrete arrangement, probably owing to ground‐state associations. On the other hand, the 2D end‐to‐face stacking induced a larger red shift of 60 nm, which is attributed to the excimer fluorescence. Surprisingly, the brick‐like lateral face‐to‐face arrangement afforded a remarkable red shift of 150 nm to give yellow fluorescence. This anomalous red shift is probably due to excited oligomer formation in such a lateral 1D arrangement according to the long fluorescence lifetime and little shift in the excitation spectrum. The regulation of the π‐stacked arrangement of anthracene fluorophores enabled the wide modulation of the fluorescence and a detailed investigation of the relationships between the photophysical properties and the arrangements.  相似文献   

3.
A series of strontium vanadium oxide–hydride phases prepared by utilizing a low‐temperature synthesis strategy in which oxide ions in Srn+1VnO3n+1 (n=∞, 1, 2) phases are topochemically replaced by hydride ions to form SrVO2H, Sr2VO3H, and Sr3V2O5H2, respectively. These new phases contain sheets or chains of apex‐linked V3+O4 squares stacked with SrH layers/chains, such that the n=∞ member, SrVO2H, can be considered to be analogous to “infinite‐layer” phases, such as Sr1?xCaxCuO2 (the parent phase of the high‐Tc cuprate superconductors), but with a d2 electron count. All three oxide–hydride phases exhibit strong antiferromagnetic coupling, with SrVO2H exhibiting an antiferromagnetic ordering temperature, TN>300 K. The strong antiferromagnetic couplings are surprising given they appear to arise from π‐type magnetic exchange.  相似文献   

4.
5.
N‐Heterocyclic carbenes and their heavier homologues are, in part, stabilized by delocalization of the N lone pairs into the vacant p‐orbital at carbon (or a heavier Group 14 element center). These interactions are usually absent in the corresponding P‐substituted species, owing to the large barrier to planarization of phosphorus. However, judicious selection of the substituents at phosphorus has enabled the synthesis of a diphosphagermylene, [(Dipp)2P]2Ge, in which one of the P centers is planar (Dipp=2,6‐diisopropylphenyl). The planar nature of this P center and the correspondingly short P? Ge distance suggest a significant degree of P? Ge multiple bond character that is due to delocalization of the phosphorus lone pair into the vacant p‐orbital at germanium. DFT calculations support this proposition and NBO and AIM analyses are consistent with a Ge? P bond order greater than unity.  相似文献   

6.
7.
π‐Conjugated polymers (Poly1–Poly3) containing a 2,2′‐bipyridine (bpy) unit were subjected to coordination to nickel and copper dithiolate for the purpose of manipulating the photophysical properties. The absorption maximum peak of Poly1 [maximum wavelength (λmax) = 446 nm] redshifted by 36 nm upon the coordination of bpy to NiCl2, which produced Poly1–NiCl2. A further bathochromic shift was observed in the spectrum of Poly1–mntNi [mntNi = (maleonitrile dithiolate)nickel; λmax = 499 nm] bearing the dithiolate ligand, which stemmed from the extension of the conjugated system over the nickel dithiolate moiety through the bpy unit. An increase in the [Ni]/[bpy] ratio in Poly1–mntNi rendered the original maximum peak at 446 nm smaller and the lower energy charge‐transfer peak at 499 nm larger; the isosbestic points remained at 380 and 475 nm. The green fluorescence (λmax = 504 nm) emitted from Poly1 markedly diminished upon the coordination of nickel dithiolate because of the effective energy transfer. The absorption maximum peak of Poly1–mntNi in chloroform at 499 nm blueshifted to 471 nm when the volume ratio of the chloroform/N,N‐dimethylformamide solvent reached 10:90. The coordination of nickel dithiolate to Poly2 and Poly3 also brought about redshifts of the absorption maximum peaks of as much as 55 and 61 nm, respectively. The absorption maximum peak of Poly1–(phenyldithiolate)nickel(pdtNi) (λmax = 474 nm) redshifted by 28 nm in comparison with that of Poly1, whereas the magnitude of the shift of Poly1–bis(thiophenoxide)nickel(btpNi) bearing two thiophenoxide ligands was 20 nm. Poly1–mntCu with a tetrahedral copper center was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2631–2639, 2004  相似文献   

8.
9.
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light‐emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation‐induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE‐active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long‐lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.  相似文献   

10.
11.
Racemic 2,4‐di‐O‐benzoyl‐myo‐inositol‐1,3,5‐orthoacetate, which normally crystallizes in a monoclinic form (form I, space group P21/n) could be persuaded to crystallize out as a metastable polymorph (form II, space group C2/c) by using a small amount of either D ‐ or L ‐ 2,4‐di‐O‐benzoyl‐myo‐inositol‐1,3,5‐orthoformate as an additive in the crystallization medium. The structurally similar enantiomeric additive was chosen by the scrutiny of previous experimental results on the crystallization of racemic 2,4‐di‐O‐benzoyl‐myo‐inositol‐1,3,5‐orthoacetate. Form II crystals can be thermally transformed to form I crystals at about 145 °C. The relative organization of the molecules in these dimorphs vary slightly in terms of the helical assembly of molecules, that is, electrophile (El)???nucleophile (Nu) and C? H???π interactions, but these minor variations have a profound effect on the facility and specificity of benzoyl‐group‐transfer reactivity in the two crystal forms. While form II crystals undergo a clean intermolecular benzoyl‐group‐transfer reaction, form I crystals are less reactive and undergo non‐specific benzoyl‐group transfer leading to a mixture of products. The role played by the additive in fine‐tuning small changes that are required in the molecular packing opens up the possibility of creating new polymorphs that show varied physical and chemical properties. Crystals of D ‐2,6‐di‐O‐benzoyl‐myo‐inositol‐1,3,5‐orthoformate (additive) did not show facile benzoyl‐group‐transfer reactivity (in contrast to the corresponding racemic compound) due to the lack of proper juxtaposition and assembly of molecules.  相似文献   

12.
π‐Extended thiadiazoles 4 – 8 fused with various electron‐donating heteroaromatic moieties have been designed and synthesized. Just like thiadiazoles 1 – 3 synthesized previously, 4 – 8 exhibit intramolecular charge‐transfer (CT) interactions, moderate‐to‐good fluorescence quantum yields of up to 0.78, and electrochemical amphoterism. In comparison with 1 – 3 , the benzannulation in thiadiazoles 4 – 7 moderately extends the π conjugation and significantly increases the stability of the cationic species formed upon electrochemical oxidation. The fluorescence quantum yields increase remarkably from 3 to 6 and 7 due to the efficient suppression of nonradiative intersystem crossing resulting from the benzannulation. The properties of 4 – 8 strongly reflect the different species annulated to the pyrrole rings, namely benzothiophene, naphthalene, and benzofuran. Eleven crystals, including poly‐ and pseudopolymorphic crystals of 1 ( 1‐Crys. ( Y ) and 1‐Crys. ( G )), 2 ( 2‐Crys. ( O ) and 2‐Crys. ( G )), 4 ( 4‐Crys. ( O ) and 4‐Crys. ( G )), and 6 ( 6‐Crys. ( O ) and 6‐Crys. ( G )), were obtained and characterized by X‐ray crystallography. The fluorescence colors and efficiencies are distinct for each poly‐ and pseudopolymorph of 1 , 2 , 4 , and 6 . It has been suggested that both the extent of the electronic interactions in the π‐stacked dimers and the presence of excitonic interactions originating in the 1D face‐to‐face slipped columns affect the fluorescence wavelengths of the poly‐ and pseudopolymorphs.  相似文献   

13.
π‐Conjugated six‐membered 1,4‐dihydrophosphinines containing a heteroatom (Si, P, S) at the 4 position were synthesized and systematically studied. X‐ray crystallographic analyses showed that the central six‐membered heterocyclic rings are almost planar. The sum of the angles around the phosphorus atom increases by 23° from the trivalent phosphorus to the phosphonium atom in the thiaphosphinine system, which is consistent with the NMR spectroscopic studies. UV/Vis spectroscopy and theoretical calculations revealed that the communication between the phosphorus center and the benzothiophene moiety is enhanced by the incorporation of a sulfur atom into the molecular scaffold. The increased conjugation endows the thiaphosphinines with interesting emission properties. Theoretical calculations supported the postulation that the orbital coupling between the π system and a σ* orbital could be enhanced in the thiaphosphinine system, especially through a phosphonium center. Cyclic voltammetry studies revealed that the thiaphosphinine oxide, thiaphosphonium, and cis‐diphosphinine oxide exhibit quasi‐reversible reduction processes, which demonstrate that simple changes in the bridge heteroatoms help to efficiently tune the redox properties of the ladder‐type 4‐hetero‐1,4‐dihydrophosphinines.  相似文献   

14.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

15.
A series of symmetric and asymmetric benzo[c,d]indole‐containing aza boron dipyrromethene (aza‐BODIPY) compounds was synthesized by a titanium tetrachloride‐mediated Schiff‐base formation reaction of commercially available benzo[c,d]indole‐2(1H)‐one and heteroaromatic amines. These aza‐BODIPY analogues show different electronic structures from those of regular aza‐BODIPYs, with hypsochromic shifts of the main absorption compared to their BODIPY counterparts. In addition to the intense fluorescence in solution, asymmetric compounds exhibited solid‐state fluorescence due to significant contribution of the vibronic bands to both absorption and fluorescence as well as reduced fluorescence quenching in the aggregates. Finally, aggregation‐induced emission enhancement, which is rare in BODIPY chromophores, was achieved by introducing a nonconjugated moiety into the core structure.  相似文献   

16.
A new in‐situ NMR strategy (termed CLASSIC NMR) for mapping the evolution of crystallization processes is reported, involving simultaneous measurement of both liquid‐state and solid‐state NMR spectra as a function of time. This combined strategy allows complementary information to be obtained on the evolution of both the solid and liquid phases during the crystallization process. In particular, as crystallization proceeds (monitored by solid‐state NMR), the solution state becomes more dilute, leading to changes in solution‐state speciation and the modes of molecular aggregation in solution, which are monitored by liquid‐state NMR. The CLASSIC NMR experiment is applied here to yield new insights into the crystallization of m‐aminobenzoic acid.  相似文献   

17.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   

18.
19.
Organic salts of anthracene‐2,6‐disulfonic acid (ADS) with a wide variety of primary amines have been fabricated, and their arrangements of anthracene molecules and solid‐state fluorescence properties investigated. Single‐crystal X‐ray studies reveal that the salts show seven types of crystal forms and corresponding molecular arrangements of anthracene moieties depending on the amine, while anthracene shows only one form and arrangement in the solid state. Depending on the molecular arrangements, the ADS salts exhibit various solid‐state fluorescence properties: spectral shift (30 nm) and suppression and enhancement of the fluorescence intensity. Especially the ADS salt with n‐heptylamine (nHepA), which shows discrete anthracene moieties in the crystal, exhibits the highest quantum yield (ΦF=46.1±0.2 %) in the series of ADS salts, which exceeds that of anthracene crystal (ΦF=42.9±0.2 %). From these systematic investigations on the arrangements and the solid‐state properties, the following factors are essential for high fluorescence quantum yield in the solid state: prevention of contact between π planes of anthracene moieties and immobilization of anthracene rings. In addition, such organic salts have potential as a system for modulating the molecular arrangements of fluorophores and the concomitant solid‐state properties. Thus, systematic investigation of this system constructs a library of arrangements and properties, and the library leads to remarkable strategies for the development of organic solid materials.  相似文献   

20.
A penta‐coordinated Ni(II) complex with a 1,5‐diazacyclooctane (DACO) ligand functionalized by two imidazole donor pendants, [NiL1Cl] (ClO4) H2O (1) (where L1 = 1,5‐bis (imidazol‐4‐ylmethyl)‐l,5‐diazacyclooctane) has been synthesized and characterized by X‐ray diffraction, infrared spectra, elemental analyses, conductance, thermal analyses and UV‐Vis techniques. Complex 1 crystallizes in triclinic crystal system, P‐l space group with a = 0.74782(7), b = 1.15082 (10), c = 1.23781(11) nm, α = 82.090(2), β = 73.011(2), γ = 83.462(2)°, V = 1.00603(16) nm3, M, = 486.00, Z = 2, Dc = 1.604 g/cm3, final R = 0.0435, and wR = 0.1244. The structures of 1 and its related complexes show that in all the three mononuclear complexes, each Ni(II) center is penta‐coordinated with a near regular square pyramid (RSP) to distorted square‐pyramidal (DSP) coordination environment due to the boat/chair configuration of DACO ring in these complexes, and the degree of distortion increases with the augment of the size of the heterocyclic pendants. In addition, the most striking feature of complex 1 resides in the formation of a two‐dimensional network structure through hydrogen bonds and stabilized by π‐π stacking. The solution behaviors of the Ni(II) complexes are also discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号