首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the structure‐morphology relationships of self‐assembled nanostructures is crucial for developing materials with the desired chemical and biological functions. Here, phosphate‐based naphthalimide (NI) derivatives have been developed for the first time to study the enzyme‐instructed self‐assembly process. Self‐assembly of simple amino acid derivative NI‐Yp resulted in non‐specific amorphous aggregates in the presence of alkaline phosphatase enzyme. On the other hand, NI‐FYp dipeptide forms spherical nanoparticles under aqueous conditions which slowly transformed into partially unzipped nanotubular structures during the enzymatic catalytic process through multiple stages which subsequently resulted in hydrogelation. The self‐assembly is driven by the formation of β‐sheet type structures stabilized by offset aromatic stacking of NI core and hydrogen bonding interactions which is confirmed with PXRD, Congo‐red staining and molecular mechanical calculations. We propose a mechanism for the self‐assembly process based on TEM and spectroscopic data. The nanotubular structures of NI‐FYp precursor exhibited higher cytotoxicity to human breast cancer cells and human cervical cancer cells when compared to the nanofiber structures of the similar Fmoc‐derivative. Overall this study provides a new understanding of the supramolecular self‐assembly of small‐molecular‐weight hydrogelators.  相似文献   

2.
The self‐assembly of semiglobular, positively charged poly(propyleneimine) (PPI) dendrimers with small monovalent counterions (e.g., Cl?) in water/acetone mixtures was investigated. We showed that PPI dendrimers can assemble into hollow, spherical, single‐layered blackberry‐type structures mediated by the presence of monovalent counterions. The effects on the assembly of changing the solvent polarity and adjusting the pH were further investigated to confirm the presence of electrostatic interactions and hydrogen bonding as the driving forces. Results showed that PPI dendrimers form stable, hollow spheres in 5–20 % v/v acetone/water and that the size of the spheres decreases monotonically as the solvent polarity and/or the charge on the dendrimers (i.e., lower solution pH) increases. This is the first example to show that small monovalent counterions can trigger attraction among PPI dendrimers (or broadly defined polyelectrolytes) that is strong enough to bring them together to form large, stable supramolecular assemblies, which indicates that these organic macroions have similar solution behavior to more‐well‐defined inorganic molecular macroions.  相似文献   

3.
Weak self‐interaction plays an important role in interpreting the biomechanisms and modes of drug action. The structure‐dependent self‐association of five phenolic acids with various bioactivities, including danshensu (DSS), caffeic acid (CA), rosmarinic acid (RA), lithospermic acid (LA), and salvianolic acid B (SA), was investigated by 1H NMR. These phenolic acids have similar condensed structures, with a CA moiety and varying numbers of DSS moieties. The strengths of the self‐association constants are in the order DSS < CA < RA < LA < SA, which corresponds to the increasing molecular size of these phenolic acids and roughly corresponds to the increasing number of DSS moieties. The binding site for the self‐aggregation of these phenolic acids has been identified to be on the CA moiety, rather than on the DSS moiety, as a result of CA's stronger aromatic π–π interactions, which cause larger chemical shift variations. The thermodynamic parameters for the self‐association of these phenolic acids show that the self‐association is spontaneous and enthalpically favorable at room temperature in all cases. It was inferred that π–π interactions and intermolecular hydrogen bonding stabilize the stacking structures of the phenolic acids. Knowledge of self‐association processes will enable us to quantitatively assess the possible effects of self‐aggregation on the interaction between drug and protein. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Studies were carried out on the hierarchical self‐assembly versus pathway complexity of N‐annulated perylenes 1 – 3 , which differ only in the nature of the linking groups connecting the perylene core and the side alkoxy chains. Despite the structural similarity, compounds 1 and 2 exhibit noticeable differences in their self‐assembly. Whereas 1 forms an off‐pathway aggregate I that converts over time (or by addition of seeds) into the thermodynamic, on‐pathway product, 2 undergoes a hierarchical process in which the kinetically trapped monomer species does not lead to a kinetically controlled supramolecular growth. Finally, compound 3 , which lacks the amide groups, is unable to self‐assemble under identical experimental conditions and highlights the key relevance of the amide groups and their position to govern the self‐assembly pathways.  相似文献   

5.
A new family of isomeric tetrapeptides containing aromatic and polar amino acid residues that are able to form molecular hydrogels following a smooth change in pH is described. The hydrogels have been studied by spectroscopic and microscopic techniques showing that the peptide primary sequence has an enormous influence on the self‐assembly process. In particular, the formation of extended hydrophobic regions and the appearance of π‐stacking interactions have been revealed as the driving forces for aggregation. Moreover, the interaction of these compounds with amyloid peptidic fragment Aβ1‐40 has been studied and some of them have been shown to act as templates for the aggregation of this peptide into non‐β‐sheet fibrillar structures. These compounds could potentially be used for the capture of toxic, soluble amyloid oligomers.  相似文献   

6.
Two iron–nitrosyl–porphyrins, nitrosyl[meso‐tetrakis(3,4,5‐trimethoxyphenylporphyrin]iron(II) acetic acid solvate ( 3 ) and nitrosyl[meso‐tetrakis(4‐methoxyphenylporphyrin]iron(II) CH2Cl2 solvate ( 4 ), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen‐atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}7 class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4–8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric‐oxide‐free iron(III)–porphyrin can be re‐nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these FeII complexes at high pH values seems to be similar to that in nitrophorin, a nitric‐oxide‐transport protein, which formally possesses FeIII. However, because the release of NO occurs from ferrous–nitrosyl–porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein.  相似文献   

7.
Low‐molecular‐weight compounds based on L ‐lysine with alkylpyridinium or ‐imidazolium groups have been synthesized and studied for their gelation behavior in H2O. Most compounds formed gels below a concentration of 2.5 weight‐%, the pyridinium bromide 2a and the 1‐methyl‐1H‐imidazolium bromide 3 even at 0.1 weight‐%. The minimum gel concentration (MGC) necessary for hydrogelation increased with increasing length of the Lys Nα‐alkanoyl chain, but the gelation ability concomitantly decreased. Electron‐microscopic images demonstrated that these hydrogelators create a three‐dimensional network in H2O by entanglement of self‐assembled nanofibers. A fluorescence study with 8‐anilinonaphthalene‐1‐sulfonic acid (ANS) proved that some hydrophobic aggregates are formed at hydrogelator concentrations below an MGC of less than 50 μM (0.004%). FT‐IR, 1H‐NMR, and Fluorescence studies indicated that the driving forces for the self‐assembly into nanofibers are mainly hydrophobic interactions and H‐bonding between amide groups.  相似文献   

8.
The synthesis of a series of NiII–salen‐based complexes with the general formula of [Ni(H2L)] (H4L=R2N,N′‐bis[R1‐5‐(4′‐benzoic acid)salicylidene]; H4L1: R2=2,3‐diamino‐2,3‐dimethylbutane and R1=H; H4L2: R2=1,2‐diaminoethane and R1=tert‐butyl and H4L3: R2=1,2‐diaminobenzene and R1=tert‐butyl) is presented. Their electronic structure and self‐assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self‐assembly through hydrogen bonding. In addition, other substituents, that is, tert‐butyl and diamine bridges (2,3‐diamino‐2,3‐dimethylbutane, 1,2‐diaminobenzene or 1,2‐diaminoethane), were used to tune the two‐dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self‐assemble into three different 2D nanoarchitectures at the solid–liquid interface on graphite. Two structures are porous and one is close‐packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized  相似文献   

9.
Summary: Supramolecular self‐assembly of poly(methyl methacrylate)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PMMA) was reported herein. The MWNT‐g‐PMMA (85 wt.‐% PMMA) dispersed in tetrahydrofuran could self‐assemble into suprastructures on surfaces such as gold, mica, silicon, quartz, or carbon films. With decreasing concentration of the MWNT‐g‐PMMA from 3 to 0.1 mg · mL−1, the assembled structures changed from cellular and basketwork‐like forms to multilayer cellular networks and individual needles. SEM, AFM, and TEM measurements confirmed the morphology of the assembled suprastructures, and revealed the assembly mechanism. Phase separation during evaporation of the solvent drives the MWNT‐g‐PMMA nanohybrids to assemble and form the suprastructures, and the rigid MWNTs stabilize the structures.

SEM images of self‐assembled suprastructures of basketwork (a), cellular network (b), and needles (c) from the THF solution of the PMMA‐grafted MWNTs on gold surface.  相似文献   


10.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

11.
For the first time the possibility to obtain nanostructures by self‐assembly of chitosan polyampholytic derivative was demonstrated. The self‐assembly of N‐carboxyethylchitosan (CECh) took place only near its isoelectric point (pH 5.0–5.6). Out of the pH range 5.0–5.6, CECh aqueous solutions behaved as real solutions. Dynamic light scattering and atomic force microscopy analyses revealed that spherically shaped or rod/worm‐like nanosized assemblies were formed depending on the polymer molar mass, pH value, and polymer concentration. CECh of two different molar masses was studied in concentrations ranging from 0.01 to 0.1 mg/mL. The structures from CECh of weight‐average molar mass (Mw ) 4.5 × 103 g/mol were spherical regardless the pH and polymer concentration. In contrast, CECh of high molar mass (HMMCECh, Mw = 6.7 × 105 g/mol) formed self‐assemblies with spherical shape only at pH 5.0 and 5.6. At pH 5.2 spherical nanoparticles were obtained only at polymer concentration 0.01 mg/mL. The mean hydrodynamic diameter (Dh) of the obtained nanoparticles was in the range from 30 to 980 nm. On increasing the concentration, aggregation of the nanoparticles appeared, and at HMMCECh concentration 0.1 mg/mL, rod/worm‐like structures were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6712–6721, 2008  相似文献   

12.
Nanorod‐assembled FHA microspheres with different F contents were for the first time prepared through a facile one‐step hydrothermal method. The effect of the reaction time and pH value of reaction solutions on the FHA morphology was investigated to elucidate the self‐assembly process of FHA microspheres. The results showed pH values had significant effect on the morphology of the formed FHA crystals, which were self‐assembled into sphere‐like sturctures at high pH conditions and rod‐like structures at low pH values. The results suggested that formation of FHA crystals with varied morphology may be directly related to Ca2+ release kinetics from EDTA‐Ca‐Na2 at different pH conditions. Furthermore, it was found that the chemical stability of FHA microspheres was dependent on the F content in the materials, and high F contents in FHA microspheres lead to improved chemical stability. These results suggest that the prepared self‐assembled FHA microspheres may be used for teeth substitution materials due to their unique hierarchical structures and controllable chemical stability.  相似文献   

13.
Two new 2 : 1 co‐crystals based on [4,4′‐bithiazole]‐2,2′‐diamine (=2,2′‐diamino‐4,4′‐bithiazole (DABTZ)) with 2,2′‐bipyridine (bipy) and benzo‐18‐crown‐6 (bk) were synthesized by slow‐evaporation method in MeOH. These co‐crystals were characterized by means of elemental analysis, and IR, and 1H‐ and 13C‐NMR spectroscopy. Also, thermal analyses under air atmosphere and X‐ray crystallography have been performed on these structures. X‐Ray single‐crystal analyses revealed that these networks contain large vacant voids. These structures, [(DABTZ)2(bipy)] and [(DABTZ)2(bk)(MeOH)], crystallized in monoclinic and triclinic forms with space groups of P21/c and P , respectively. The self‐assembly of these compounds in the solid state is likely caused by both H‐bonding and π? π stacking.  相似文献   

14.
A 3,7‐diazabicyclo[3.3.1]nonane linking to two melamines is a unique transmembrane H+/Cl carrier. In the solid state, the V‐shaped compound forms a HCl‐bound zig‐zag network through cooperative protonation and hydrogen bond interactions. In the lipid membrane, the receptor forms a dimeric self‐assembly involving multiple H+ and Cl leading to the efficient transport of the acid. The pH‐dependent Cl efflux observed for the compound was rationalized based on a gradual protonation model that confers an active transmembrane carrier at physiological pH.  相似文献   

15.
It is well‐known that the self‐assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization‐induced self‐assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano‐objects. In this study, PISA is used to prepare a new thermoresponsive poly(N‐(2‐hydroxypropyl) methacrylamide)‐poly(2‐hydroxypropyl methacrylate) [PHPMAC‐PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well‐defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well‐suited to theoretical analysis. Self‐consistent mean field theory suggests this rich self‐assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1H NMR studies.  相似文献   

16.
It is well‐known that the self‐assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization‐induced self‐assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano‐objects. In this study, PISA is used to prepare a new thermoresponsive poly(N‐(2‐hydroxypropyl) methacrylamide)‐poly(2‐hydroxypropyl methacrylate) [PHPMAC‐PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well‐defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well‐suited to theoretical analysis. Self‐consistent mean field theory suggests this rich self‐assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1H NMR studies.  相似文献   

17.
One of the fundamental problems in supramolecular chemistry, as well as in material sciences, is how to control the self‐assembly of polymers on the nanometer scale and how to spontaneously organize them towards the macroscopic scale. To overcome this problem, inspired by the self‐assembly systems in nature, which feature the dynamically controlled self‐assembly of biopolymers, we have previously proposed a self‐assembly system that uses a dynamic liquid/liquid interface with dimensions in the micrometer regime, thereby allowing polymers to self‐assemble under precisely controlled nonequilibrium conditions. Herein, we further extend this system to the creation of hierarchical self‐assembled architectures of polysaccharides. A natural polysaccharide, β‐1,3‐glucan (SPG), and water were injected into opposite “legs” of microfluidic devices that had a Y‐shape junction, so that two solvents would gradually mix in the down stem, thereby causing SPG to spontaneously self‐assemble along the flow in a head‐to‐tail fashion, mainly through hydrophobic interactions. In the initial stage, several SPG nanofibers would self‐assemble at the Y‐junction owing to the shearing force, thereby creating oligomers with a three‐way junction point. This unique structure, which could not be created through conventional mixing procedures, has a divergent self‐assembly capability. The dynamic flow allows the oligomers to interact continuously with SPG nanofibers that are fed into the Y‐junction, thus amplifying the nanostructure along the flow to form SPG networks. Consequently, we were able to create stable, centimeter‐length macroscopic polysaccharide strands under the selected flow conditions, which implies that SPG nanofibers were assembled hierarchically in a supramolecular fashion in the dynamic flow. Microscopic observations, including SEM and AFM analysis, revealed the existence of clear hierarchical structures inside the obtained strand. The network structures self‐assembled to form sub‐micrometer‐sized fibers. The long fibers further entangled with each other to give stable micrometer‐sized fibers, which finally assembled to form the macroscopic strands, in which the final stabilities in the macroscopic regime were governed by that of the network structures in the nanometer regime. Thus, we have exploited this new supramolecular system to create hierarchical polymeric architectures under precisely controlled flow conditions, by combining the conventional supramolecular strategy with microfluidic science.  相似文献   

18.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

19.
Five polymeric architectures with a systematic increase in architectural complexity were synthesized by “click” reactions from a toolbox of functional linear polymers and small molecule linkers. The amphiphilic architectures ranged from a simple 3‐miktoarm star block copolymer to the more complex third generation dendrimer‐like block copolymer, consisting of polystyrene (PSTY) and polyacrylic acid (PAA). Micellization of these architectures in water at a pH of 7 under identical ionic strength gave spherical micelles ranging in size from 9 to 30 nm. Subsequent calculations of the PSTY core density, average surface area per PAA arm on the corona‐core interface, and the relative stretching of the PAA arms provided insights into the effect of architecture on the self‐assembly processes. A particular trend was observed that with increased architectural complexity the hydrodynamic diameter, radius of the core in the dry state and the aggregation number also increased with the exception of the third generation dendrimer. On the basis of these observations, we postulate that thermodynamic factors controlling self‐assembly were the entropic penalty of forming PSTY loops in the core counterbalanced by the reduction in repulsive forces through chain stretching. This results in a greater number of aggregating unimers and consequently larger micelle sizes. The junction points within the architecture also play an important role in controlling the self‐assembly process. The G3 dendrimer showed results contradictory to the aforementioned trend. We believe that the self‐assembly process of this architecture was dominated by the increased attractive forces due to stretching of the PSTY core chains to form a more compact core. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6292–6303, 2009  相似文献   

20.
In cancer treatment, the unsatisfactory solid‐tumor penetration of nanomaterials limits their therapeutic efficacy. We employed an in vivo self‐assembly strategy and designed polymer–peptide conjugates (PPCs) that underwent an acid‐induced hydrophobicity increase with a narrow pH‐response range (from 7.4 to 6.5). In situ self‐assembly in the tumor microenvironment at appropriate molecular concentrations (around the IC50 values of PPCs) enabled drug delivery deeper into the tumor. A cytotoxic peptide KLAK, decorated with the pH‐sensitive moiety cis‐aconitic anhydride (CAA), and a cell‐penetrating peptide TAT were conjugated onto poly(β‐thioester) backbones to produce PT‐K‐CAA, which can penetrate deeply into solid tumors owing to its small size as a single chain. During penetration in vivo, CAA responds to the weak acid, leading to the self‐assembly of PPCs and the recovery of therapeutic activity. Therefore, a deep‐penetration ability for enhanced cancer therapy is provided by this in vivo assembly strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号