首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ‐donating N‐heterocyclic carbene ligands with weak σ‐donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well‐defined silica‐supported catalysts, [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2Ph)(IMes)+][B(ArF)4?] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazol‐2‐ylidene, B(ArF)4=B(3,5‐(CF3)2C6H3)4] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.  相似文献   

2.
A borane B(C6F5)3‐catalyzed metathesis reaction between the Si?C bond in the cyclic (alkyl)(amino)germylene (CAAGe) 1 and the Si?H bond in a silane (R3SiH; 2 ) is reported. Mechanistic studies propose that the initial step of the reaction involves Si?H bond activation to furnish an ionic species [ 1 ‐SiR3]+[HB(C6F5)3]?, from which [Me3Si]+[HB(C6F5)3]? and an azagermole intermediate are generated. The former yields Me3SiH concomitant with the regeneration of B(C6F5)3 whereas the latter undergoes isomerization to afford CAAGes bearing various silyl groups on the carbon atom next to the germylene center. This strategy allows the straightforward synthesis of eight new CAAGes starting from 1 .  相似文献   

3.
The research area of perfluoroalkylsilanes is still in its infancy. Although there are already many examples of difluorotriorganylsilicates, the first example of a completely characterized trifluorotriorganylsilicate is presented, the dianion [Si(C2F5)3F3]2?. The strongly electron‐withdrawing influence of the pentafluoroethyl groups appears to be a fundamental cause of the stability of this compound. This dianion is also the first structurally characterized example of a tris(pentafluoroethyl)silicon compound. The synthesis and complete characterization of [PPh4]2[Si(C2F5)3F3] and [PPh4][Si(C2F5)3F2] along with the precursor [H(OEt2)2][Si(C2F5)3F2] was achieved from SiCl4 and LiC2F5.  相似文献   

4.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

5.
Kinetically stabilized congeners of carbenes, R2C, possessing six valence electrons (four bonding electrons and two non‐bonding electrons) have been restricted to Group 14 elements, R2E (E=Si, Ge, Sn, Pb; R=alkyl or aryl) whereas isoelectronic Group 15 cations, divalent species of type [R2E]+ (E=P, As, Sb, Bi; R=alkyl or aryl), were unknown. Herein, we report the first two examples, namely the bismuthenium ion [(2,6‐Mes2C6H3)2Bi][BArF4] ( 1 ; Mes=2,4,6‐Me3C6H2, ArF=3,5‐(CF3)2C6H3) and the stibenium ion [(2,6‐Mes2C6H3)2Sb][B(C6F5)4] ( 2 ), which were obtained by using a combination of bulky meta‐terphenyl substituents and weakly coordinating anions.  相似文献   

6.
Double chloride abstraction of Cp*AsCl2 gives the dicationic arsenic species [(η5‐Cp*)As(tol)][B(C6F5)4]2 ( 2 ) (tol=toluene). This species is shown to exhibit Lewis super acidity by the Gutmann–Beckett test and by fluoride abstraction from [NBu4][SbF6]. Species 2 participates in the FLP activation of THF affording [(η2‐Cp*)AsO(CH2)4(THF)][B(C6F5)4]2 ( 5 ). The reaction of 2 with PMe3 or dppe generates [(Me3P)2As][B(C6F5)4] ( 6 ) and [(σ‐Cp*)PMe3][B(C6F5)4] ( 7 ), or [(dppe)As][B(C6F5)4] ( 8 ) and [(dppe)(σ‐Cp*)2][B(C6F5)4]2 ( 9 ), respectively, through a facile cleavage of C?As bonds, thus showcasing unusual reactivity of this unique As‐containing compound.  相似文献   

7.
The D‐π‐A type phosphonium salts in which electron acceptor (A=‐+PR3) and donor (D=‐NPh2) groups are linked by polarizable π‐conjugated spacers show intense fluorescence that is classically ascribed to excited‐state intramolecular charge transfer (ICT). Unexpectedly, salts with π=‐(C6H4)n‐ and ‐(C10H6C6H4)‐ exhibit an unusual dual emission (F1 and F2 bands) in weakly polar or nonpolar solvents. Time‐resolved fluorescence studies show a successive temporal evolution from the F1 to F2 emission, which can be rationalized by an ICT‐driven counterion migration. Upon optically induced ICT, the counterions move from ‐+PR3 to ‐NPh2 and back in the ground state, thus achieving an ion‐transfer cycle. Increasing the solvent polarity makes the solvent stabilization dominant, and virtually stops the ion migration. Providing that either D or A has ionic character (by static ion‐pair stabilization), the ICT‐induced counterion migration should not be uncommon in weakly polar to nonpolar media, thereby providing a facile avenue for mimicking a photoinduced molecular machine‐like motion.  相似文献   

8.
Bis(η5‐cyclo­penta­dienyl)[rel‐(1R,5S,7R,14S)‐(1,3,5,7,9,11,14‐hepta­cyclo­pentyl‐7,14‐dioxidotri­cyclo­[7.3.31,9.15,11]­hepta­siloxan‐3‐yloxy)­bis­(penta­fluoro­phenyl)­borane(2−)]­zirconium, [Zr(C5H5)2(C47H63BF10O12Si7)], consists of [ZrCp2] (Cp is cyclopentadienyl) and [(C6F5)2B] moieties bound to a silsesquioxane core. The silsesquioxane binds to the Zr atom through two of its O atoms to form a distorted tetrahedron. The [(C6F5)2B] moiety is bound to the silsesquioxane through an O atom, forming an Si—O—B bond angle of 168.4 (4)°. The steric and electronic effects of the Zr atom and the borate moieties force the silsesquioxane core to distort. These distortions can be seen by examination of the Si—O—Si bond angles.  相似文献   

9.
The ditopic germanium complex FGe(NIPr)2Ge[BF4] ( 3 [BF4]; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) is prepared by the reaction of the amino(imino)germylene (Me3Si)2NGeNIPr ( 1 ) with BF3?OEt2. This monocation is converted into the germylene‐germyliumylidene 3 [BArF4] [ArF=3,5‐(CF3)2‐C6H3] by treatment with Na[BArF4]. The tetrafluoroborate salt 3 [BF4] reacts with 2 equivalents of Me3SiOTf to give the novel complex (OTf)(GeNIPr)2[OTf] ( 4 [OTf]), which affords 4 [BArF4] and 4 [Al(ORF)4] [RF=C(CF3)3] after anion exchange with Na[BArF4] or Ag[Al(ORF)4], respectively. The computational, as well as crystallographic study, reveals that 4 + has significant bis(germyliumylidene) dication character.  相似文献   

10.
The synthesis and full characterization of α-silylated (α-SiCPs; 1 – 7 ) and α-germylated (α-GeCPs; 11 – 13 ) phosphorus ylides bearing one chloride substituent R3PC(R1)E(Cl)R22 (R=Ph; R1=Me, Et, Ph; R2=Me, Et, iPr, Mes; E=Si, Ge) is presented. The molecular structures were determined by X-ray diffraction studies. The title compounds were applied in halide abstraction studies in order to access cationic species. The reaction of Ph3PC(Me)Si(Cl)Me2 ( 1 ) with Na[B(C6F5)4] furnished the dimeric phosphonium-like dication [Ph3PC(Me)SiMe2]2[B(C6F5)4]2 ( 8 ). The highly reactive, mesityl- or iPr-substituted cationic species [Ph3PC(Me)SiMes2][B(C6F5)4] ( 9 ) and [Ph3PC(Et)SiiPr2][B(C6F5)4] ( 10 ) could be characterized by NMR spectroscopy. Carrying out the halide abstraction reaction in the sterically demanding ether iPr2O afforded the protonated α-SiCP [Ph3PCH(Et)Si(Cl)iPr2][B(C6F5)4] ( 6 dec ) by sodium-mediated basic ether decomposition, whereas successfully synthesized [Ph3PC(Et)SiiPr2][B(C6F5)4] ( 10 ) readily cleaves the F−C bond in fluorobenzene. Thus, the ambiphilic character of α-SiCPs is clearly demonstrated. The less reactive germanium analogue [Ph3PC(Me)GeMes2][B{3,5-(CF3)2C6H3}4] ( 14 ) was obtained by treating 11 with Na[B{3,5-(CF3)2C6H3}4] and fully characterized including by X-ray diffraction analysis. Structural parameters indicate a strong CYlide−Ge interaction with high double bond character, and consequently the C−E (E=Si, Ge) bonds in 9 , 10 and 14 were analyzed with NBO and AIM methods.  相似文献   

11.
[(BDI)Mg+][B(C6F5)4] ( 1 ; BDI=CH[C(CH3)NDipp]2; Dipp=2,6-diisopropylphenyl) was prepared by reaction of (BDI)MgnPr with [Ph3C+][B(C6F5)4]. Addition of 3-hexyne gave [(BDI)Mg+ ⋅ (EtC≡CEt)][B(C6F5)4]. Single-crystal X-ray analysis, NMR investigations, Raman spectra, and DFT calculations indicate a significant Mg-alkyne interaction. Addition of the terminal alkynes PhC≡CH or Me3SiC≡CH led to alkyne deprotonation by the BDI ligand to give [(BDI-H)Mg+(C≡CPh)]2 ⋅ 2 [B(C6F5)4] ( 2 , 70 %) and [(BDI-H)Mg+(C≡CSiMe3)]2 ⋅ 2 [B(C6F5)4] ( 3 , 63 %). Addition of internal alkynes PhC≡CPh or PhC≡CMe led to [4+2] cycloadditions with the BDI ligand to give {Mg+C(Ph)=C(Ph)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 4 , 53 %) and {Mg+C(Ph)=C(Me)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 5 , 73 %), in which the Mg center is N,N,C-chelated. The (BDI)Mg+ cation can be viewed as an intramolecular frustrated Lewis pair (FLP) with a Lewis acidic site (Mg) and a Lewis (or Brønsted) basic site (BDI). Reaction of [(BDI)Mg+][B(C6F5)4] ( 1 ) with a range of phosphines varying in bulk and donor strength generated [(BDI)Mg+ ⋅ PPh3][B(C6F5)4] ( 6 ), [(BDI)Mg+ ⋅ PCy3][B(C6F5)4] ( 7 ), and [(BDI)Mg+ ⋅ PtBu3][B(C6F5)4] ( 8 ). The bulkier phosphine PMes3 (Mes=mesityl) did not show any interaction. Combinations of [(BDI)Mg+][B(C6F5)4] and phosphines did not result in addition to the triple bond in 3-hexyne, but during the screening process it was discovered that the cationic magnesium complex catalyzes the hydrophosphination of PhC≡CH with HPPh2, for which an FLP-type mechanism is tentatively proposed.  相似文献   

12.
As the dysprosocenium complex [Dy(Cpttt)2][B(C6F5)4] (Cpttt=C5H2tBu3-1,2,4, 1-Dy ) exhibits magnetic hysteresis at 60 K, similar lanthanide (Ln) complexes have been targeted to provide insights into this remarkable property. We recently reported homologous [Ln(Cpttt)2][B(C6F5)4] ( 1-Ln ) for all the heavier Ln from Gd–Lu; herein, we extend this motif to the early Ln. We find, for the largest LnIII cations, that contact ion pairs [Ln(Cpttt)2{(C6F51-F)B(C6F5)3}] ( 1-Ln ; La–Nd) are isolated from reactions of parent [Ln(Cpttt)2(Cl)] ( 2-Ln ) with [H(SiEt3)2][B(C6F5)4], where the anion binds weakly to the equatorial sites of [Ln(Cpttt)2]+ through a single fluorine atom in the solid state. For smaller SmIII, [Sm(Cpttt)2][B(C6F5)4] ( 1-Sm ) is isolated, which like heavier 1-Ln does not exhibit equatorial anion interactions, but the EuIII analogue 1-Eu could not be synthesised due to the facile reduction of EuIII precursors to EuII products. Thus with the exception of Eu and radioactive Pm this work constitutes a structurally similar family of Ln metallocenium complexes, over 50 years after the [M(Cp)2]+ series was isolated for the 3d metals.  相似文献   

13.
Heterogenization of tris(pentafluorophenyl)borane [B(C6F5)3] on a silica support stabilized with chlorotriphenylmethane (CICPh3) and N,N‐dimethylaniline (HNMe2Ph) creates the following supported borane cocatalysts: [HNMe2Ph]+[B(C6F5)3‐SiO2]? and [CPh3]+[B(C6F5)3‐SiO2]?. These supported catalysts were reacted with Cp2ZrCl2 TIBA in situ to generate active metallocene species in the reactor. Triisobutylaluminum (TIBA) was a good coactivator for dichloro‐zirconocene, acting as the prealkylating agent to generate cationic zirconocene (Cp2ZrC4H9+). The catalytic performances were determined from the kinetics of ethylene‐consumption profiles that were independent of the time dedicated to the activation of the catalysts. The scanning electron microscopy‐energy dispersive X‐ray measurements showed that B(C6F5)3 dispersed uniformly on the silica support. Under our reaction conditions, the [CPh3]+[B(C6F5)3‐SiO2]? system had higher productivity and weight‐average molecular weight than the [HNMe2Ph]+[B(C6F5)3‐SiO2]? system. For the [CPh3]+[B(C6F5)3‐SiO2]? system, the productivity increased with the amount catalyst; however, the polydispersity index of polyethylene synthesized did not change. The final shape of polymer particles was a larger‐diameter version of the original support particle. The polymer particles synthesized with supported [CPh3]+[B(C6F5)3‐SiO2]? catalysts had larger diameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3240–3248, 2002  相似文献   

14.
The transition‐metal‐free hydroboration of various alkenes with pinacolborane (HBpin) initiated by tris[3,5‐bis(trifluoromethyl)phenyl]borane (BArF3) is reported. The choice of the boron Lewis acid is crucial as the more prominent boron Lewis acid tris(pentafluorophenyl)borane (B(C6F5)3) is reluctant to react. Unlike B(C6F5)3, BArF3 is found to engage in substituent redistribution with HBpin, resulting in the formation of ArFBpin and the electron‐deficient diboranes [H2BArF]2 and [(ArF)(H)B(μ‐H)2BArF2]. These in situ‐generated hydroboranes undergo regioselective hydroboration of styrene derivatives as well as aliphatic alkenes with cis diastereoselectivity. Another ligand metathesis of these adducts with HBpin subsequently affords the corresponding HBpin‐derived anti‐Markovnikov adducts. The reactive hydroboranes are regenerated in this step, thereby closing the catalytic cycle.  相似文献   

15.
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5R2]+ cations with cyclopentadienyl metal complexes. The reaction of [CpArFe(μ‐Br)]2 (CpAr=C5(C6H4‐4‐Et)5) with [P5R2][GaCl4] (R=iPr and 2,4,6‐Me3C6H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes ( 1‐R , R=iPr and Mes), showing an unsymmetric “butterfly” structure. The same products 1‐R were formed from K[CpAr] and [P5R2][GaCl4]. The cationic complexes [CpArCo(η4‐P5R2)][GaCl4] ( 2‐R [GaCl4], R=iPr and Cy) and [(CpArNi)23:3‐P5R2)][GaCl4] ( 3‐R [GaCl4]) were obtained from [P5R2][GaCl4] and [CpArM(μ‐Br)]2 (M=Co and Ni) as well as by using low‐valent “CpArMI” sources. Anion metathesis of 2‐R [GaCl4] and 3‐R [GaCl4] was achieved with Na[BArF24]. The P5 framework of the resulting salts 2‐R [BArF24] can be further functionalized with nucleophiles. Thus reactions with [Et4N]X (X=CN and Cl) give unprecedented cyano‐ and chloro‐functionalized complexes, while organo‐functionalization was achieved with CyMgCl.  相似文献   

16.
The utilization of 5‐hydroxymethyl furfural (HMF) as a renewable feedstock for polymer synthesis has not yet been achieved as it is structurally asymmetric and contains three active functional groups. Reported here is the unprecedented step‐growth copolymerization of HMF and dihydrosilanes, through a coordination mechanism, to afford linear poly(silyl ether)s in the presence of B(C6F5)3 and the heteroscorpionate zinc hydride complex LZnH [L=(MePz)2CP(Ph)2NPh, MePz=3,5‐dimethylpyrazolyl]. The adduct B(C6F5)3???H???Zn, confirmed by NMR spectroscopy and DFT calculations, plays a key role in the synergistic catalysis, where B(C6F5)3 activates ZnH and stabilizes the Zn+ active species, and the sterically bulky ZnH effectively inhibits (C6F5)3B from reacting with dihydrosilane to form (C6F5)3B‐H‐Si, which facilely initiates ring opening of furan. The mechanism was studied by DFT simulations.  相似文献   

17.
The bulk cyclopolymerization of diepisulfide, 1,2:5,6‐diepithio‐3,4‐di‐O‐methyl‐1,2:5,6‐tetradeoxy‐D ‐mannitol ( 1 ), was studied using R4N+Br? (R = ? CH3, C2H5, C3H7, C4H9, and C7H15) and (C4H9)4N+X? (X = Cl, I, NO3, and ClO4) as the initiators. All the bulk polymerizations of 1 using quaternary tetraalkylammonium salts at 90 °C proceeded without gelation even at high conversion to produce gel‐free polymers consisting of 2,5‐anhydro‐1,5‐dithio‐D ‐glucitol (I) as the major cyclic repeating unit along with 1,5‐anhydro‐2,5‐dithio‐D ‐mannitol (II) and the desulfurized acyclic unit (III) as the minor units. The polymerization rate and molar fraction of the I unit increased with the increasing alkyl chain length of the tetraalkylammonium cation and the increasing nucleophilicity of the counteranion. Tetrabutylammonium chloride exhibited the highest catalytic activity and the highest stereoselectivity, that is, the thiosugar polymer with I:II:III = 81:15:4 and a number‐average molecular weight of 31.9 × 103 was obtained in 85% yield for a polymerization time of 0.5 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 965–970, 2002  相似文献   

18.
Organically templated metal sulfates are relatively new. Six amine‐templated transition‐metal sulfates with different types of chain structures, including a novel iron sulfate with a chain structure corresponding to one half of the kagome structure, were synthesized by hydro/solvothermal methods. Amongst the one‐dimensional metal sulfates, [C10N2H10][Zn(SO4)Cl2] ( 1 ) is the simplest, being formed by corner‐linked ZnO2Cl2 and SO4 tetrahedra. [C6N2H18][Mn(SO4)2(H2O)2] ( 2 ) and [C2N2H10][Ni(SO4)2(H2O)2] ( 3 ) have ladder structures comprising four‐membered rings formed by SO4 tetrahedra and metal–oxygen octahedra, just as in the mineral kröhnkite. [C4N2H12][VIII(OH)(SO4)2]?H2O ( 4 ) and [C4N2H12][VF3(SO4)] ( 5 ) exhibit chain topologies of the minerals tancoite and butlerite, respectively. The structure of [C4N2H12][H3O][FeIIIFeII F6(SO4)] ( 6 ) is noteworthy in that it corresponds to half of the hexagonal kagome structure. It exhibits ferrimagnetic properties at low temperatures and the absence of frustration, unlike the mixed‐valent iron sulfate with the full kagome structure.  相似文献   

19.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

20.
We report a novel 1:1 cocrystal of β‐alanine with dl ‐tartaric acid, C3H7NO2·C4H6O6, (II), and three new molecular salts of dl ‐tartaric acid with β‐alanine {3‐azaniumylpropanoic acid–3‐azaniumylpropanoate dl ‐tartaric acid–dl ‐tartrate, [H(C3H7NO2)2]+·[H(C4H5O6)2], (III)}, γ‐aminobutyric acid [3‐carboxypropanaminium dl ‐tartrate, C4H10NO2+·C4H5O6, (IV)] and dl ‐α‐aminobutyric acid {dl ‐2‐azaniumylbutanoic acid–dl ‐2‐azaniumylbutanoate dl ‐tartaric acid–dl ‐tartrate, [H(C4H9NO2)2]+·[H(C4H5O6)2], (V)}. The crystal structures of binary crystals of dl ‐tartaric acid with glycine, (I), β‐alanine, (II) and (III), GABA, (IV), and dl ‐AABA, (V), have similar molecular packing and crystallographic motifs. The shortest amino acid (i.e. glycine) forms a cocrystal, (I), with dl ‐tartaric acid, whereas the larger amino acids form molecular salts, viz. (IV) and (V). β‐Alanine is the only amino acid capable of forming both a cocrystal [i.e. (II)] and a molecular salt [i.e. (III)] with dl ‐tartaric acid. The cocrystals of glycine and β‐alanine with dl ‐tartaric acid, i.e. (I) and (II), respectively, contain chains of amino acid zwitterions, similar to the structure of pure glycine. In the structures of the molecular salts of amino acids, the amino acid cations form isolated dimers [of β‐alanine in (III), GABA in (IV) and dl ‐AABA in (V)], which are linked by strong O—H…O hydrogen bonds. Moreover, the three crystal structures comprise different types of dimeric cations, i.e. (AA)+ in (III) and (V), and A+A+ in (IV). Molecular salts (IV) and (V) are the first examples of molecular salts of GABA and dl ‐AABA that contain dimers of amino acid cations. The geometry of each investigated amino acid (except dl ‐AABA) correlates with the melting point of its mixed crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号