首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new triphenylamine dyes that contain alkylthio‐substituted thiophenes with a low bandgap as a π‐conjugated bridge unit were designed and synthesized for organic dye‐sensitized solar cells (DSSCs). The effects of the structural differences in terms of the position, number, and shape of the alkylthio substituents in the thiophene bridge on the photophysical properties of the dye and the photovoltaic performance of the DSSC were investigated. The introduction of an alkylthio substituent at the 3‐position of thiophene led to a decrease in the degree of redshift and the value of the molar extinction coefficient of the charge‐transfer band, and the substituent with a bridged structure led to a larger redshift than that of the open‐chain structure. The introduction of bulky and hydrophobic side chains decreased the short‐circuit photocurrent (Jsc), which was caused by the reduced amount of dye adsorbed on TiO2. This resulted in a decrease in the overall conversion efficiency (η), even though it could improve the open‐circuit voltage (Voc) due to the retardation of charge recombination. Furthermore, the change in solvents for TiO2 sensitization had a critical effect on the performance of the resulting DSSCs due to the different amounts of dye adsorbed. Based on the optimized dye bath and molecular structure, the ethylene dithio‐substituted dye ( ATT3 ) showed a prominent solar‐to‐electricity conversion efficiency of 5.20 %.  相似文献   

2.
Three designed metal‐free dyes based on 3‐(10‐butyl‐8‐(methylthio)‐10H‐phenothiazin‐3‐yl)‐2‐cyanoacrylic acid (V5) are investigated by density functional theory (DFT) and time‐dependent DFT to improve the efficiency of V5‐based solar cell devices. We have studied the geometrical structures, excitations, electronic structures, and conduction band shift caused by dye adsorption. The results indicate that the designed dyes have several merits compared with V5 including: (i) smaller energy band gaps and the LUMO closer to conduction band of TiO2; (ii) wider absorption spectra and higher oscillator strength; (iii) larger dipole moment that lead to higher Voc value. Our work suggests that the modification of π‐bridge with diketopyrrolopyrrole unit is very effective for designing novel metal‐free dyes with improved performance for dye‐sensitized solar cells (DSSCs). These findings are expected to provide a bright way to design new efficient metal‐free organic DSSCs. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back‐transfer from the TiO2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor‐Bridge‐Donor ( A ‐Bridge‐ D ) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back‐transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A ‐Bridge‐ D structured dyes. Specifically, eight famous sulfur containing π‐bridges were analyzed ( A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
This one‐pot, four‐component coupling approach (Suzuki–Miyaura coupling/C?H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene‐based organic dyes for dye‐sensitized solar cells (DSSCs). Seven thiophene‐based, organic dyes of various donor structures with/without the use of a 3,4‐ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one‐pot, 3‐step, 35–61 %). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short‐circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open‐circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n‐hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2–5.6 %).  相似文献   

5.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

6.
In this study, nonperipherally tetra‐substituted ( 2 ), peripherally tetra‐substituted ( 3 ), and peripherally octa‐substituted ( 4 ) zinc(II) phthalocyanines were synthesized as sensitizers for dye‐sensitized solar cells (DSSCs) in which 3‐pyridin‐3‐ylpropoxy substituent acts as anchoring unit to bind TiO2 surface. The optical results indicated that there is an interaction between the dyes and the TiO2 surface. The photovoltaic performances of the DSSCs based on these dyes were found to depend on both the position and number of the substituents. Despite the more red‐shifted absorption, the DSSC based on 2 showed the conversion efficiency of 0.68%, which is lower than 1.36% and 0.92% for 3 and 4 , respectively, under one sun (AM 1.5G). The vertical orientation of the dye on TiO2 surface could be the main reason for the higher photovoltaic performance of complex 3 , which is beneficial for not only injecting the electrons into the conduction band of TiO2 but also reducing the charge recombination. Overall, these results demonstrate that the peripherally tetra‐substituted 3‐pyridin‐3‐ylpropoxy zinc(II) phthalocyanine complex ( 3 ) as a sensitizer can more efficiently utilize the photons in the red/near‐infrared region with respect to the other complexes studied.  相似文献   

7.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

8.
We report DFT studies on some perylene‐based dyes for their electron transfer properties in solar cell applications. The study involves modeling of different donor‐π‐acceptor type sensitizers, with perylene as the donor, furan/pyrrole/thiophene as the π‐bridge and cyanoacrylic group as the acceptor. The effect of different π‐bridges and various substituents on the perylene donor was evaluated in terms of opto‐electronic and photovoltaic parameters such as HOMO‐LUMO energy gap, λmax, light harvesting efficiency(LHE), electron injection efficiency (Øinject), excited state dye potential (Edye*), reorganization energy(λ), and free energy of dye regeneration (). The effect of various substituents on the dye–I2 interaction and hence recombination process was also evaluated. We found that the furan‐based dimethylamine derivative exhibits a better balance of the various optical and photovoltaic properties. Finally, we evaluated the overall opto‐electronic and transport parameters of the TiO2‐dye assembly after anchoring the dyes on the model TiO2 cluster assembly.  相似文献   

9.
Four novel donor ? π‐bridge ? acceptor (D ? π ? A) polymeric metal complexes (P1–P4) based on 8‐hydroxyquinoline metal complexes were synthesized and tested for their performance in dye‐sensitized solar cells (DSSCs). The polymeric metal complexes dyes use alkoxy benzene or alkyl fluorene as the electron donor and C=C as π linker; the 8‐hydroxyquinoline derivative complex part was used as the electron acceptor and diaminomaleonitrile was used as ancillary ligand. The two strongly electron‐withdrawing cyano groups in the polymer structure can provide an efficient charge transport in the intramolecular between donor and acceptor parts. The thermal, photophysical, electrochemical and photovoltaic properties of these copolymers were investigated by TGA, differential scanning calorimetry, cyclic voltammetry and cureent density‐voltage curves, and the results showed that dye containing complex Zn(II) and alkoxy benzene unit benefited the generation of photocurrent and open‐circuit voltages, and a maximum power conversion efficiency of 1.91% (P2) was obtained, with an open‐circuit voltage of 0.71 V, a short‐circuit current density of 4.23 mA cm?2, and a fill factor of 38.6% under AM1.5G irradiation. The study results also show that the four polymers exhibit good thermal stability, indicating that these polymeric metal complexes are suitable for the fabrication processes of optoelectronic devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Thieno[3,4‐c]pyrrole‐4,6‐dione‐based organic sensitizers with triphenylamine ( FNE38 and FNE40 ) or julolidine ( FNE39 and FNE41 ) as electron‐donating unit have been designed and synthesized. A linear hexyl group or a branched alkyl chain, the 2‐ethylhexyl group, is incorporated into molecular skeleton of the dyes to minimize intermolecular interactions. The absorption, electrochemical, and photovoltaic properties for these sensitizers were then systematically investigated. It is found that the sensitizers have similar photophysical and electrochemical properties, such as absorption spectra and energy levels, owing to their close chemical structures. However, the quasi‐solid‐state dye‐sensitized solar cells (DSSCs) based on the two types of sensitizers exhibit very different performance parameters. Upon the incorporation of the short ethyl group on the hexyl moiety, enhancements in both open‐circuit voltage (Voc) and short‐circuit current (Jsc) are achieved for the quasi‐solid‐state DSSCs. The Voc gains originating from the suppression of charge recombination were quantitatively investigated and are in good agreement with the experimentally observed Voc enhancements. Therefore, an enhanced solar energy conversion efficiency (η) of 6.16 %, constituting an increase by 23 %, is achieved under standard AM 1.5 sunlight without the use of coadsorbant agents for the quasi‐solid‐state DSSC based on sensitizer FNE40 , which bears the branched alkyl group, in comparison with that based on FNE38 carrying the linear alkyl group. This work presents a design concept for considering the crucial importance of the branched alkyl substituent in novel metal‐free organic sensitizers.  相似文献   

11.
We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye‐sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron‐deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO2 surface, rapid dye regeneration, and effective retardation of charge recombination.  相似文献   

12.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   

13.
Expanded porphyrins with the absorption profile down to the infrared region through increased π‐conjugation are suitable candidates for a low energy sensitizer. Oxasmaragdyrin boron complexes, a class of aromatic‐core‐modified expanded porphyrin with 22 π‐electrons, have been recently utilized as an efficient low energy sensitizer in dye‐sensitized solar cells. In this paper, we have prepared a series of eight novel boryl oxasmaragdyrins through molecular engineering on the periphery and their overall photovoltaic performances in dye‐sensitized solar cells are evaluated. With the help of photophysical, electrochemical, and photovoltaic studies, it is revealed that molecular structure, especially the number and position of the donor–acceptor groups play a pivotal role in their photovoltaic performance. Presence of the two well‐separated split Soret bands in the 400–500 nm region of UV/Vis spectrum ensures broader coverage of absorption wavelengths. Even though the two‐anchoring‐group dyes ( SM5 – SM8 ) bind strongly to TiO2 compared to one‐anchoring‐group dyes ( SM1 – SM4 ), the latter have superior photovoltaic performance than the former. Dye SM1 , with two hexyloxyphenyl donors and one carboxylic acid anchor showed the best overall conversion efficiency of 4.36 % (JSC=10.91 mA cm?2; VOC=0.59 V; FF=0.68). This effective modulation of photovoltaic performance through structural engineering of the dyes will serve as a guideline for the future design of efficient low energy light‐harvesting sensitizers.  相似文献   

14.
The inverse‐micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4‐vinylbenzoic acid for their attachment onto TiO2 films of dye‐sensitized solar cells (DSSCs). The average diameter of the COOH‐functionalized Si (Si? COOH) Nps was 4.6(±1.7) nm. Depth profiling by secondary‐ion mass spectrometry revealed that the Si Nps were uniformly attached onto the TiO2 films. The number of RuII dye molecules adsorbed onto a TiO2 film that was treated with the Si? COOH Nps was 42 % higher than that on the untreated TiO2 film. As a result, DSSCs that incorporated the Si? COOH Nps exhibited higher short‐circuit photocurrent density and an overall energy‐conversion efficiency than the untreated DSSCs by 22 % and 27 %, respectively. This enhanced performance, mostly owing to the intramolecular charge‐transfer to TiO2 from the dye molecules that were anchored to the Si? COOH Nps, was confirmed by comparing the performance with two different RuII–bipyridine dyes (N719 and N749).  相似文献   

15.
《化学:亚洲杂志》2017,12(3):332-340
A new series of acetylene‐bridged phenothiazine‐based di‐anchoring dyes have been synthesized, fully characterized, and used as the photoactive layer for the fabrication of conventional dye‐sensitized solar cells (DSSCs). Tuning of their photophysical and electrochemical properties using different π‐conjugated aromatic rings as the central bridges has been demonstrated. This molecular design strategy successfully inhibits the undesirable charge recombination and prolongs the electron lifetime significantly to improve the power conversion efficiency (η ), which was proven by the detailed studies of electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decay (OCVD). Under a standard air mass (AM) 1.5 irradiation (100 mW cm−2), the DSSC based on the dye with phenyl bridging unit exhibits the highest η of 7.44 % with open‐circuit photovoltage (V oc) of 0.796 V, short‐circuit photocurrent density (J sc) of 12.49 mA cm−2 and fill factor (ff) of 0.748. This η value is comparable to that of the benchmark N719 under the same conditions.  相似文献   

16.
Dye‐sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO2, ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident‐solar‐light‐to‐electricity conversion efficiency and low cost of production. To develop high‐performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light‐harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch‐making molecular design of organic dyes for high photovoltaic performance and long‐term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.  相似文献   

17.
A series of new triarylamine‐based platinum‐acetylide complexes ( WY s) have been designed and synthesized as new sensitizers for applications in dye‐sensitized solar cells (DSSCs). With the aim of investigating the effect of a rigidifying donor structure on the photoelectrical parameters of the corresponding DSSCs, two new sensitizers, WY1 and WY2 , with rigid and coplanar fluorene units as an electron donor, were prepared. Moreover, two sensitizers that contained triphenylamine units as an electron donor, WY3 and WY4 , were also synthesized for comparison. The photo‐ and electrochemical properties of all of these new complexes have been extensively explored. We found that the dimethyl‐fluorene unit exhibited a stronger electron‐donating ability and better photovoltaic performance compared to the triphenylamine unit, owing to its rigidifying structure, which restricted the rotation of σ bonds, thus increasing the conjugation efficiency. Furthermore, WY2 , which contained a dimethyl‐fluorene unit as an electron donor and bithiophene as a π bridge, showed a relatively high open‐circuit voltage (Voc) of 640 mV and a PCE of 4.09 %. This work has not only expanded the choice of platinum‐acetylide sensitizers, but also demonstrates the advantages of restricted rotation of donor σ bonds for improved behavior of the corresponding DSSCs.  相似文献   

18.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

19.
To design efficient dyes for dye‐sensitized solar cells (DSSCs), using a Zn‐coordinated phthalocyanine (TT7) as the prototype, a series of phthalocyanine dyes (Pcs) with different metal ions and peripheral/axial groups have been investigated by means of density functional theory (DFT) and time‐dependent DFT (TDDFT) methods. Computational results show that the iodinated Al‐based dye with a peripheral amino group (Al‐I‐NH2‐Pc) exhibits the largest redshift in the maximum absorbance (λmax). In addition, Al‐based dyes have appropriate energy‐level arrangements of frontier orbitals to keep excellent balance between electron injection and regeneration of oxidized dyes. Further, it has been found that the intermolecular π‐staking interaction in Al‐I‐Pc molecules is weaker than the other metal‐based Pcs, which may effectively reduce dye aggregation on the semi‐conductor surface. All these results suggest iodinated Al‐based Pcs (Al‐I‐Pcs) to be potentially promising sensitizers in DSSCs.  相似文献   

20.
Four new unsymmetric platinum(II) bis(aryleneethynylene) derivatives have been designed and synthesized, which showed good light‐harvesting capabilities for application as photosensitizers in dye‐sensitized solar cells (DSSCs). The absorption, electrochemical, time‐dependent density functional theory (TD‐DFT), impedance spectroscopic, and photovoltaic properties of these platinum(II)‐based sensitizers have been fully characterized. The optical and TD‐DFT studies show that the incorporation of a strongly electron‐donating group significantly enhances the absorption abilities of the complexes. The maximum absorption wavelength of these four organometallic dyes can be tuned by various structural modifications of the triphenylamine and/or thiophene electron donor, improving the light absorption range up to 650 nm. The photovoltaic performance of these dyes as photosensitizers in mesoporous TiO2 solar cells was investigated, and a power conversion efficiency as high as 1.57 % was achieved, with an open‐circuit voltage of 0.59 V, short‐circuit current density of 3.63 mA cm?2, and fill factor of 0.73 under simulated AM 1.5G solar illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号