首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2017,29(5):1469-1473
The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalysts with enhanced activity to improve the battery performance. Herein, we synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen‐doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivity, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as‐prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.  相似文献   

2.
Electron transfer (ET) reactions in bioelectrocatalysis of enzymes at electrode surfaces require not only the efficient immobilization, but also highly conductive nanostructured platform, which allows for retaining its bioactivity and structural conformation. The novel architecture of spatially separated electrochemically reduced graphene oxide (ERGO) by multi‐walled carbon nanotubes functionalized with 4‐(pyrrole‐1‐yl) benzoic acid (MWCNT/PyBA) with the accurate porous structure could be an alternative for earlier approaches to the construction of bioelectrocatalytic systems with rapid diffusion of reagents from the solution to the enzyme molecule. The formation of ERGO/MWCNT/PyBA system was confirmed by electrochemical, spectroscopic and microscopic methods. The cyclic voltammetry experiments revealed that the presence of ERGO in the conductive material affects the electronic communication between the enzyme molecule and modified electrode surface greatly improving its ET properties resulting in a double increase of the heterogeneous ET rate constant value (ks=6.5 s?1). The fabricated glucose oxidase based biosensor sensitively detects glucose, therefore, ERGO/MWCNT/PyBA architecture could provide a novel and efficient platform for immobilization of redox enzymes.  相似文献   

3.
Direct‐methanol fuel cells are proton‐exchange fuel cell in which methanol is used as the fuel. The important advantage of these fuel cells is the simplicity of transport and storage of methanol. In this study, methanol fuel cell electrocatalysts including graphene quantum dots (GQDs), functionalized multi‐walled carbon nanotubes (f‐MWCNTs) and GQDs/f‐MWCNTs composite were synthesized. The structures of synthesized electrocatalysts were highlighted by scanning electron microscope (SEM), raman spectroscopy, UV–vis spectroscopy, fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and x‐ray diffraction (XRD) method. After that, the effective surface areas (ESA) of GQDs, f‐MWCNTs and GQDs/f‐MWCNTs were calculated. Finally, GQDs/f‐MWCNTs composite modified glassy carbon electrode (GQDs/f‐MWCNTs/GCE) showed highest current signals for methanol oxidation than those of comparable GQDs/GCE and f‐MWCNTs/GCE.  相似文献   

4.
5.
Reduced graphene oxide‐supported tungsten carbide composite (WC/RGO) was prepared by program‐controlled reduction‐carburization technique. Scanning electron microscope (SEM) and transmission electron microscope (TEM) show that WC nanoparticles with a narrow distribution (10–20 nm) are highly dispersed both on the edge and between the layers of RGO. And then it was used as a support to load different low contents (no more than 0.4 wt%) of Pt via sacrificial Cu adlayers. The morphology and the electrocatalytic activity of the prepared catalysts were characterized by TEM and cyclic voltammograms (CV), respectively. The results indicate that a small amount of isolated Pt atoms show low or even no activity for methanol oxidation. With the increasing deposition cycles, the content of Pt and the ensembles of neighboring Pt atoms are increased, which makes the onset potential shift negatively and mass current density increase. The results demonstrate that controllable amount of Pt can be deposited on WC/RGO by galvanic displacement with Cu, and the extent and domain of Pt loading affect the electrochemical performance. Meanwhile, this research also provides another route to prepare a catalyst with ultra low noble metal on WC/RGO for solving the problem of high cost of the catalyst.  相似文献   

6.
The oxygen reduction reaction (ORR) is of significant importance in the development of fuel cells. Now, cobalt–nitrogen‐doped chiral carbonaceous nanotubes (l/d ‐CCNTs‐Co) are presented as efficient electrocatalysts for ORR. The chiral template, N‐stearyl‐l/d ‐glutamic acid, induces the self‐assembly of well‐arranged polypyrrole and the formation of ordered graphene carbon with helical structures at the molecular level after the pyrolysis process. Co was subsequently introduced through the post‐synthesis method. The obtained l/d ‐CCNTs‐Co exhibits superior ORR performance, including long‐term stability and better methanol tolerance compared to achiral Co‐doped carbon materials and commercial Pt/C. DFT calculations demonstrate that the charges on the twisted surface of l/d ‐CCNTs are widely separated; as a result the Co atoms are more exposed on the chiral CCNTs. This work gives us a new understanding of the effects of helical structures in electrocatalysis.  相似文献   

7.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   

8.
9.
A high amount of heteroatom doping in carbon, although favorable for enhanced density of catalytically active sites, may lead to substantially decreased electroconductivity, which is necessary for the electrochemical oxygen reduction reaction. Herein, a relatively low amount of nitrogen was successfully doped into carbon nanotubes (CNTs) by a hydrothermal approach in one step, and the synthesized nitrogen‐doped CNT (CNT‐N) materials retained most of the original, excellent characteristics, such as the graphitic structure, tubular morphology, and high surface area, of CNTs. The resultant CNT‐N materials, although containing a relatively low amount of nitrogen doping, exhibited high electrocatalytic ORR activity, comparable to that of 20 wt % Pt/C; long durability; and, more importantly, largely inhibited methanol crossover effect.  相似文献   

10.
A water‐insoluble picket‐fence porphyrin was first assembled on nitrogen‐doped multiwalled carbon nanotubes (CNx MWNTs) through Fe? N coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X‐ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high‐valent iron(IV)–porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10?7 to 4.9×10?3 mol L?1 and a detection limit of 3.5×10?7 mol L?1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices.  相似文献   

11.
《化学:亚洲杂志》2017,12(3):283-288
The capture and storage of CO2 have been suggested as an effective strategy to reduce the global emissions of greenhouse gases. Hence, in recent years, many studies have been carried out to develop highly efficient materials for capturing CO2. Until today, different types of porous materials, such as zeolites, porous carbons, N/B‐doped porous carbons or metal‐organic frameworks (MOFs), have been studied for CO2 capture. Herein, the CO2 capture performance of new hybrid materials, graphene‐organic frameworks (GOFs) is described. The GOFs were synthesized under mild conditions through a solvothermal process using graphene oxide (GO) as a starting material and benzene 1,4‐diboronic acid as an organic linker. Interestingly, the obtained GOF shows a high surface area (506 m2 g−1) which is around 11 times higher than that of GO (46 m2 g−1), indicating that the organic modification on the GO surface is an effective way of preparing a porous structure using GO. Our synthetic approach is quite simple, facile, and fast, compared with many other approaches reported previously. The synthesized GOF exhibits a very large CO2 capacity of 4.95 mmol g−1 at 298 K (1 bar), which is higher those of other porous materials or carbon‐based materials, along with an excellent CO2/N2 selectivity of 48.8.  相似文献   

12.
Carbon nanotubes (CNTs) were non‐covalently functionalized with chitosan (Chit) and then employed as the support for PtRu nanoparticles. The functionalization was carried out at room temperature without the use of corrosive acids, thereby preserving the integrity and the electronic conductivity of the CNTs. Transmission electron microscopy reveals that PtRu nanoparticles were highly dispersed on the surface of Chit‐functionalized CNTs (CNT‐Chit) with small particle‐size. Cyclic voltammetry studies indicated that the PtRu nanoparticle/CNT‐Chit nanohybrids have a higher electrochemical surface area, electrocatalytic performance, and stability towards methanol oxidation compared to PtRu nanoparticles supported on the pristine CNTs.  相似文献   

13.
14.
Pt‐based nanostructures serving as anode catalysts for the methanol oxidation reaction (MOR) have been widely studied for many years. Nevertheless, challenging issues such as poor reaction kinetics and the short‐term stability of the MOR are the main drawbacks of such catalysts and limit their applications. Herein, we have developed a facile approach to encapsulate Pt nanoparticles (NPs) inside the nanochannels of porous carbon nanotubes (CNTs; Pt‐in‐CNTs) as a new enhanced electrocatalytic material. The as‐prepared CNTs offer simultaneously ordered diffusion channels for ions and a confinement effect for the NPs, which both facilitate the promotion of catalytic kinetics and avoid the Ostwald ripening of Pt NPs, thus leading to high activity and durable cycle life as an anode catalyst for MOR. This work provides a new approach for enhancing the stability and activity by optimizing the structure of the catalyst, and the Pt‐in‐CNTs represent the most durable catalysts ever reported for MOR.  相似文献   

15.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

16.
Small beginnings : Metal nanoparticle/CNT nanohybrids are synthesized from carbon nanotubes (CNTs) functionalized with an ionic‐liquid polymer. The Pt and PtRu nanoparticles with narrow size distribution (average diameter: (1.3±0.4) nm for PtRu, (1.9±0.5) nm for Pt) are dispersed uniformly on the CNTs (see images) and show good performance in methanol electrooxidation.

  相似文献   


17.
The present study describes a novel and very sensitive electrochemical assay for determination of hydrogen peroxide (H2O2) based on synergistic effects of reduced graphene oxide‐ magnetic iron oxide nanocomposite (rGO‐Fe3O4) and celestine blue (CB) for electrochemical reduction of H2O2. rGO‐Fe3O4 nanocomposite was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), electrochemical impedance spectroscopy and cyclic voltammetry. Chitosan (Chit) was used for immobilization of amino‐terminated single‐stranded DNA (ss‐DNA) molecules via a glutaraldehyde (GA) to the surface of rGO‐Fe3O4. The MTT (3‐(4,5‐Dim ethylt hiazol‐2‐yl)‐2,5‐diphenylt etrazolium bromide) results confirmed the biocompatibility of nanocomposite. Experimental parameters affecting the ss‐DNA molecules immobilization were optimized. Finally, by accumulation of the CB on the surface of the rGO‐Fe3O4‐Chit/ssDNA, very sensitive amperometric H2O2 sensor was fabricated. The electrocatalytic activity of the rGO‐Fe3O4‐Chit/DNA‐CB electrode toward H2O2 reduction was found to be very efficient, yielding very low detection limit (DL) of 42 nM and a sensitivity of 8.51 μA/μM. Result shows that complex matrices of the human serum samples did not interfere with the fabricated sensor. The developed sensor provided significant advantages in terms of low detection limit, high stability and good reproducibility for detection of H2O2 in comparison with recently reported electrochemical H2O2 sensors.  相似文献   

18.
To achieve sustainable production of hydrogen (H2) through water splitting, establishing efficient and earth‐abundant electrocatalysts is of great necessity. Morphology engineering of graphene is now shown to modulate the electronic structure of carbon skeleton and in turn endow it with excellent ability of proton reduction. Three‐dimensional (3D) graphene networks with a high density of sharp edge sites are synthesized. Electrocatalytic measurements indicate that the obtained 3D graphene networks can electrocatalyze H2 evolution with an extremely low onset potential of about 18 mV in 0.5 m H2SO4 solution, together with good stability. A combination of control experiments and density functional theory (DFT) investigations indicates that the exceptional H2 evolution performance is attributed to the abundant sharp edge sites of the advanced frameworks, which are responsible for promoting the adsorption and reduction of protons.  相似文献   

19.
Podlike nitrogen‐doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)‐FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I?/I3? redox reaction of dye‐sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)‐FeNi composite. DSSCs with Pod(N)‐FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82 %, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)‐FeNi composite thus shows promise as an environmentally friendly, low‐cost, and highly efficient CE material for DSSCs.  相似文献   

20.
A nanocomposite of CdSe quantum dots with nitrogen‐doped carbon nanotubes was prepared for enhancing the electrochemiluminescent (ECL) emission of quantum dots. With hydrogen peroxide as co‐reactant, the nanocomposite modified electrode showed a cathodic ECL emission with a starting potential of ?0.97 V (vs. Ag/AgCl) in phosphate buffer solution, which was five‐times stronger than that from pure CdSe quantum dots and three‐times stronger than that from CdSe quantum dots composited with carbon nanotubes. The latter showed a starting potential of ?1.19 V. This result led to a sensitive ECL sensing of hydrogen peroxide with good stability, acceptable reproducibility and a detection limit down to 2.1×10?7 mol L?1. Nitrogen‐doped carbon nanotubes could be used as a good material for the construction of sensitive ECL biosensors for chemical and biochemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号