首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lanosterol synthase catalyzes the polycyclization reaction of (3S)‐2,3‐oxidosqualene ( 1 ) into tetracyclic lanosterol 2 by folding 1 in a chair‐boat‐chair‐chair conformation. 27‐Nor‐ and 29‐noroxidosqaulenes ( 7 and 8 , respectively) were incubated with this enzyme to investigate the role of the methyl groups on 1 for the polycyclization cascade. Compound 7 afforded two enzymatic products, namely, 30‐norlanosterol ( 12 ) and 26‐normalabaricatriene ( 13 ; 12 / 13 9:1), which were produced through the normal chair‐boat‐chair‐chair conformation and an atypical chair‐chair‐boat conformation, respectively. Compound 8 gave two products 14 and 15 ( 14 / 15 4:5), which were generated by the normal and the unusual polycyclization pathways through a chair‐chair‐boat‐chair conformation, respectively. It is remarkable that the twist‐boat structure for the B‐ring formation was changed to an energetically favored chair structure for the generation of 15 . Surprisingly, 14 and 15 consisted of a novel 6,6,6,6‐fused tetracyclic ring system, thus differing from the 6,6,6,5‐fused lanosterol skeleton. Together with previous results, we conclude that the methyl‐29 group is critical to the correct folding of 1 , with lesser contributions from the other branched methyl groups, such as methyl‐26, ‐27, and ‐28. Furthermore, we demonstrate that the methyl‐29 group has a crucial role in the formation of the five‐membered D ring of the lanosterol scaffold.  相似文献   

2.
The title compound, C30H46O9, prepared from a mixture of α‐ and β‐dihydro­artemisinin, has α‐ and β‐arteether moieties linked via an –O– bridge, so that the mol­ecule is asymmetric about the bridge. The endoperoxide bridges of the parent compounds have been retained in each half of the ether‐bridged dimer. The rings exhibit chair and twist–boat conformations.  相似文献   

3.
4‐Deoxy‐4‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I), crystallizes from water at room temperature in a slightly distorted 4C1 chair conformation. The observed chair distortion differs from that observed in β‐d ‐glucopyranose [Kouwijzer, van Eijck, Kooijman & Kroon (1995). Acta Cryst. B 51 , 209–220], (II), with the former skewed toward a BC3,O5 (boat) conformer and the latter toward an O5TBC2 (twist–boat) conformer, based on Cremer–Pople analysis. The exocyclic hydroxymethyl group conformations in (I) and (II) are similar; in both cases, the O—C—C—O torsion angle is ∼−60° (gg conformer). Intermolecular hydrogen bonding in the crystal structures of (I) and (II) is conserved in that identical patterns of donors and acceptors are observed for the exocyclic substituents and the ring O atom of each monosaccharide. Inspection of the crystal packing structures of (I) and (II) reveals an essentially identical packing configuration.  相似文献   

4.
Condensation of 1‐methyl‐β‐carboline‐3‐carbaldehyde with ethyl azidoacetate and subsequent thermolysis of the resulting azidopropenoate was used to [c] annulate a pyrrole ring onto the β‐carboline moiety, thus producing the first example of the pyrrolo[3,2‐c]‐β‐carboline ring system. The latter ring system results from cyclization at the C‐4 carbon, whereas cyclization at the N‐2 nitrogen atom also occurs to form a pyrazolo[3,2‐c]‐β‐carboline ring system. Condensation of β‐carboline‐1‐carbaldehyde with ethyl azidoacetate produced a non‐isolable intermediate, which immediately underwent cyclization, however in this case cyclization occurred via attack at the ester and the azide remained intact. The resulting 5‐azidocanthin‐6‐one was transformed to the first examples of 5‐aminocanthin‐6‐ones. β‐Carboline‐1,3‐dicarbaldehyde failed to give an acceptable reaction with ethyl azidoacetate, but did undergo selective condensation with dimethyl acetylene dicarboxylate at the C‐1 carbaldehyde with concomitant cyclization to form a highly functionalized 2‐formyl‐canthine derivative.  相似文献   

5.
The structures of methyl 3β‐acetoxy‐12‐oxo‐18β‐olean‐28‐oate [C33H52O5, (I)] and methyl 3β‐acetoxy‐12,19‐dioxoolean‐9(11),13(18)‐dien‐28‐oate [C33H46O6, (II)] are described. In (I), all rings are in the chair conformation, rings D and E are cis and the other rings trans‐fused. In compound (II), only rings A and E are in the chair conformation, ring B has a distorted chair conformation, ring C a distorted half‐boat and ring D an insignificantly distorted half‐chair conformation.  相似文献   

6.
Five new β‐carboline alkaloids, 6,12‐dimethoxy‐3‐(2‐hydroxylethyl)‐β‐carboline (1), 3,10‐dihydroxy‐β‐carboline (2), 6,12‐dimethoxy‐3‐(1‐hydroxylethyl)‐β‐carboline (3), 6,12‐dimethoxy‐3‐(1,2‐dihydroxylethyl)‐β‐carboline (4), and 6‐methoxy‐3‐(2‐hydroxyl‐1‐ethoxylethyl)‐β‐carboline (5), and two new natural products, 6‐methoxy‐12‐hydroxy‐3‐methoxycarbonyl‐β‐carboline (6) and 3‐hydroxy‐β‐carboline (7) were isolated from the stems of Picrasma quassioides along with 16 known β‐carboline alkaloids (8–23). The structures of new compounds were determined by extensive spectroscopic analyses, and the 1D and 2D NMR data of compounds 6, 7 and 10 were reported for the first time. The bioassays showed that only compounds 14 and 16 could enhance the differentiation of 3T3‐L1 preadiocytes accompanied by secretion of adiponectin proteins among these 23 compounds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Several pyrido[2,3‐e]pyrimidine fused with other rings have been prepared by intramolecular cyclization of 5‐(4‐chlorophenyl)‐2‐hydrazino‐benzo [6,7]cyclohepta‐[1,2‐b]pyrido[2,3‐e]pyrimidine‐4‐one ( 1 ) with acids, carbon disulfide to form triazole derivatives ( 2,4 ), halo‐ketones to give triazine derivative ( 5 ), β‐ketoesters, β‐cyanoesters, and β‐diketones to yield 2‐(1‐pyrazolyl) derivatives ( 7,9,10 ), and aldehydes to form arylhydrazone derivatives ( 11a,b ) which cyclized to form triazoles ( 12a,b ). Also, acyclic N‐nucleosides are prepared by heating under reflux 2‐hydrazino‐benzo[6,7]cyclohepta[1,2‐b]pyrido[2,3‐e] pyrimidin‐4‐one ( 1 ) with xylose and glucose to give the corresponding acyclic N‐nucleosides ( 13a,b ) which are cyclized to afford the corresponding protected tetra and penta–O‐acetate C‐nucleosides ( 14a,b ). Deacetylating of the latter nucleosides afforded the free acyclic C‐nucleosides ( 15a,b ). © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:34–43, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20248  相似文献   

8.
In an approach to the biologically important 6‐azabicyclo[3.2.1]octane ring system, the scope of the tandem 4‐exo‐trig carbamoyl radical cyclization—dithiocarbamate group transfer reaction to ring‐fused β‐lactams is evaluated. β‐Lactams fused to five‐, six‐, and seven‐membered rings are prepared in good to excellent yield, and with moderate to complete control at the newly formed dithiocarbamate stereocentre. No cyclization is observed with an additional methyl substituent on the terminus of the double bond. Elimination of the dithiocarbamate group gives α,β‐ or β,γ‐unsaturated lactams depending on both the methodology employed (base‐mediated or thermal) and the nature of the carbocycle fused to the β‐lactam. Fused β‐lactam diols, obtained from catalytic OsO4‐mediated dihydroxylation of α,β‐unsaturated β‐lactams, undergo semipinacol rearrangement via the corresponding cyclic sulfite or phosphorane to give keto‐bridged bicyclic amides by exclusive N‐acyl group migration. A monocyclic β‐lactam diol undergoes Appel reaction at a primary alcohol in preference to semipinacol rearrangement. Preliminary investigations into the chemo‐ and stereoselective manipulation of the two carbonyl groups present in a representative 7,8‐dioxo‐6‐azabicyclo[3.2.1]octane rearrangement product are also reported.  相似文献   

9.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

10.
The chiral tridentate spiro P‐N‐S ligands (SpiroSAP) were developed, and their iridium complexes were prepared. Introduction of a 1,3‐dithiane moiety into the ligand resulted in a highly efficient chiral iridium catalyst for asymmetric hydrogenation of β‐alkyl‐β‐ketoesters, producing chiral β‐alkyl‐β‐hydroxyesters with excellent enantioselectivities (95–99.9 % ee) and turnover numbers of up to 355 000.  相似文献   

11.
A water‐soluble benzenesulfonamidoquinolino‐β‐cyclodextrin has been successfully synthesized in 30 % yield by incorporating a N‐(8‐quinolyl)‐p‐aminobenzenesulfonamide (HQAS) group to β‐cyclodextrin through a flexible linker. This compound exhibits a good fluorescence response in the presence of Zn2+ in water but gives poor fluorescence responses with other metal ions commonly present in a physiological environment under similar conditions. Fluorescence microscopic and two‐dimensional NMR experiments showed that benzenesulfonamidoquinolino‐β‐cyclodextrin could bind to the loose bilayer membranes. As a result, benzenesulfonamidoquinolino‐β‐cyclodextrin was found to act as an efficient cell‐impermeable Zn2+ probe, showing a specific fluorescent sensing ability to Zn2+‐containing damaged cells whilst exhibiting no response in the presence of healthy cells.  相似文献   

12.
The β‐pyranose form, (III), of 3‐deoxy‐d ‐ribo‐hexose (3‐deoxy‐d ‐glucose), C6H12O5, crystallizes from water at 298 K in a slightly distorted 4C1 chair conformation. Structural analyses of (III), β‐d ‐glucopyranose, (IV), and 2‐deoxy‐β‐d ‐arabino‐hexopyranose (2‐deoxy‐β‐d ‐glucopyranose), (V), show significantly different C—O bond torsions involving the anomeric carbon, with the H—C—O—H torsion angle approaching an eclipsed conformation in (III) (−10.9°) compared with 32.8 and 32.5° in (IV) and (V), respectively. Ring carbon deoxygenation significantly affects the endo‐ and exocyclic C—C and C—O bond lengths throughout the pyranose ring, with longer bonds generally observed in the monodeoxygenated species (III) and (V) compared with (IV). These structural changes are attributed to differences in exocyclic C—O bond conformations and/or hydrogen‐bonding patterns superimposed on the direct (intrinsic) effect of monodeoxygenation. The exocyclic hydroxymethyl conformation in (III) (gt) differs from that observed in (IV) and (V) (gg).  相似文献   

13.
The cerium(IV) ammonium nitrate (CAN)‐catalyzed sequential multicomponent reaction between tryptamine, α,β‐unsaturated aldehydes, and β‐dicarbonyl compounds affords highly substituted indolo[2,3‐a]quinolizines in a single synthetic operation. Two rings are generated through the creation of two C? C and two C? N bonds by a domino process comprising initial β‐enaminone formation, followed by individual Michael addition, 6‐exotrig cyclization, iminium formation, and Pictet–Spengler steps. Furthermore, the reaction is diastereoselective and affords exclusively compounds with a trans relationship between the H‐2 and H‐12b protons. The use of amines bearing a less nucleophilic side chain aromatic ring (5‐bromotryptamine, 3,4‐dimethoxyphenylethylamine) prevents the Pictet–Spengler final step and leads to N‐indolylethyl or N‐phenylethyl‐1,4‐dihydropyridines, which are cyclized to the corresponding indolo[2,3‐a]quinolizines or benzo[a]quinolizines in the presence of HCl in methanol/water. Treatment of the fused quinolizine derivatives with sodium triacetoxyborohydride led to the corresponding indolo[2,3‐a]quinolizidines or benzo[a]quinolizidines, possessing four stereogenic centers, as mixtures of two diastereomers.  相似文献   

14.
Reactions of 5-(p-aminophenyl)-10,15,20-triphenyl porphyrin (1) with Ru3(CO)12 or M(OCOCH3)2 (M=Ni,Mn) afforded metalloporphyrins(4-6),respectively.6-Deoxy-6-io-do-β-cyclodextrin(2) and mono(6-O-trifluoromethanesulfonyl) permethylated β-cyclodextrin(3) reacted with complexes 4-6 to give β-cyclodextrin bonded metal porphyrins (7-9) and permethylated β-cyclodextrin bonded me-tal porphyrins (10-12) respectively.These new complexes were identified by MS,IR,UV-visible and ^1H NMR spectra,and elemental analysis.  相似文献   

15.
Two polymorphs of 20‐desmethyl‐β‐carotene (systematic name: 20‐nor‐β,β‐carotene), C39H54, in monoclinic and triclinic space groups, were formed in the same vial by recrystallization from pyridine and water. Each polymorph crystallizes with the complete molecule as the asymmetric unit, and the two polymorphs show differing patterns of disorder. The β end rings of both polymorphs have the 6‐scis conformation, and are twisted out of the plane of the polyene chain by angles of −53.2 (8) and 47.3 (8)° for the monoclinic polymorph, and −43.6 (3) and 56.1 (3)° for the triclinic polymorph. The cyclohexene end groups are in the half‐chair conformation, but the triclinic polymorph shows disorder of one ring. Overlay of the molecules shows that they differ in the degree of nonplanarity of the polyene chains and the angles of twist of the end rings. The packing arrangements of the two polymorphs are quite different, with the monoclinic polymorph showing short intermolecular contacts of the disordered methyl groups with adjacent polyene chain atoms, and the triclinic polymorph showing π–π stacking interactions of the almost parallel polyene chains. The determination of the crystal structures of the two title polymorphs of 20‐desmethyl‐β‐carotene allows information to be gained regarding the structural effects on the polyene chain, as well as on the end groups, versus that of the parent compound β‐carotene. The absence of the methyl group is known to have an impact on various functions of the title compound.  相似文献   

16.
Annonalide (3β,20‐epoxy‐3α,16‐dihydroxy‐15‐oxo‐7‐pimaren‐19,6β‐olide, C20H26O6, 1 ) is the major (9βH)‐pimarane diterpene isolated from tubers of Cassimirella ampla, and it exhibits cytotoxic properties upon interaction with ctDNA. We have prepared new derivatives of 1 by modification of the (9βH)‐pimarane backbone and report here the semisynthesis and absolute configuration of a novel rearranged 19,20‐δ‐lactone (9βH)‐pimarane. Our approach was the reduction of the carbonyl groups of 1 with sodium borohydride, at positions C15 (no stereoselectivity) and C3 (stereoselective reduction), followed by rearrangement of the 6,19‐γ‐lactone ring into the six‐membered 19,20‐δ‐lactone ring in 4a (3β,6β,16‐trihydroxy‐7‐pimaren‐19,20β‐olide monohydrate, C20H30O6·H2O). The absolute structure of the new compound, 4a , was determined unambiguously with a Flack parameter x of −0.01 (11), supporting the stereochemistry assignment of 1 redetermined here. Besides the changes in the pattern of covalent bonds caused by reduction and lactone rearrangement, the conformation of one of the three fused cyclohexane rings is profoundly different in 4a , adopting a chair conformation instead of the boat shape found in 1 . Furthermore, the intramolecular hydrogen bond present in 1 is lost in new compound 4a , due to hydrogen bonding between the 3‐OH group and the solvent water molecule.  相似文献   

17.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

18.
A gold‐catalyzed desilylative cyclization was developed for facile synthesis of bridged tetracyclic indolenines, a common motif in many natural indole alkaloids. An antimicrobial screen of the cyclization products identified one compound which selectively potentiates β‐lactam antibiotics in methicillin‐resistant S. aureus (MRSA), and re‐sensitizes a variety of MRSA strains to β‐lactams.  相似文献   

19.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

20.
A new three‐residue turn in β peptides nucleated by a 12/10‐mixed helix is presented. In this design, β peptides were derived from the 1:1 alternation of C‐linked carbo‐β‐amino acid ester [BocNH‐(R)‐β‐Caa(r)‐OMe] (Boc=tert‐butyloxycarbonyl), which consisted of a D ‐ribo furanoside side chain, and β‐hGly residues. The hexapeptide with (R)‐β‐Caa(r) at the N terminus showed the ‘turn’ stabilized by a 14‐membered NH(4) ??? CO(6) hydrogen bond at the C terminus nucleated by a robust 12/10‐mixed helix, thus providing a ‘helix‐turn’ (HT) motif. The turn and the helix were additionally stabilized by intraresidue electrostatic interaction between the furan oxygen in the carbohydrate side chain and NH in the backbone. However, the hexapeptide with a β‐hGly residue at the N terminus demonstrated the presence of a 10/12 helix through its entire length, which again showed the intraresidue interaction between NH and furan oxygen. The intraresidue NH ??? O? Me electrostatic interactions observed in the monomer, however, were absent in the peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号