首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new molecular building blocks 1 a – c for supramolecular polymerization are described that feature two dipolar merocyanine dyes tethered by p‐xylylene spacers. Concentration‐ and temperature‐dependent UV/Vis spectroscopy in chloroform combined with dynamic light scattering, capillary viscosimetry and atomic force microscopy investigations were applied to elucidate the mechanistic features of the self‐assembly of these strongly dipolar dyes. Our detailed studies reveal that the self‐assembly is very pronounced for bis(merocyanines) 1 a , b bearing linear alkyl chains, but completely absent for bis(merocyanine) 1 c bearing sterically more bulky ethylhexyl substituents. Both temperature‐ and concentration‐dependent UV/Vis data provide unambiguous evidence for a cooperative self‐assembly process for bis(merocyanines) 1 a , b , which was analyzed in detail by the Meijer–Schenning–Van‐der‐Schoot model (applicable to temperature‐dependent data) and by the Goldstein–Stryer model (applicable to concentration‐dependent data). By combining both methods all parameters of interest to understand the self‐assembly process could be derived, including in particular the nucleus size (8–10 monomeric units), the cooperativity factor (ca. 0.006), and the nucleation and elongation constants of about 103 and 106 M ?1 in chloroform at room temperature, respectively.  相似文献   

2.
A series of three bis(merocyanine) dyes comprising chromophores of different conjugation lengths has been synthesized and the intramolecular aggregation process was investigated by UV/Vis absorption spectroscopy. The spectral changes observed upon variation of the solvent polarity reveal a folding process resulting in a cofacial π-stack of two chromophores with a decrease of the aggregation tendency with increasing chromophore length and solvent polarity. Solvent-dependent UV/Vis studies of the monomeric reference dyes show a significant increase of the polyene-like character for dyes with longer polymethine chains in nonpolar solvents, which is reversed upon aggregation due to the polarizability effect of the adjacent chromophore within the dye stack. The pronounced hypsochromic shift of the absorption band observed upon aggregation indicates strong coupling of the dyes’ transition dipole moments, which was confirmed by quantum-chemical analysis.  相似文献   

3.
A series of linear doubly discotic triad supermolecules based on a porphyrin (P) core and two triphenylene (Tp) arms linked by amide bonds are synthesized. The samples are denoted as P(Tp)2. Hydrogen bonding along the P stacks is the primary driving force for the supramolecular self‐assembly of P(Tp)2 triad supermolecules. Meanwhile, the degree of coupling between P and Tp disks also plays an important role. For samples with the spacer lengths longer than or similar to the alkyl chain lengths in the Tp arms, P and Tp are decoupled to a large degree. This decoupling result in non‐uniform tilt angles for P and Tp disks along both the a‐ and c‐axes. Therefore, large unit cells are observed with eight P(Tp)2 supermolecules per cell. For a sample with the spacer length much shorter than the alkyl chains in the Tp arms, P and Tp are strongly coupled. Therefore, both P and Tp have uniform tilt angles along the a‐ and c‐axes. A small unit cell is obtained with only one P(Tp)2 supermolecule per cell.  相似文献   

4.
We report the self‐assembly of a new family of hydrophobic, bis(pyridyl) PtII complexes featuring an extended oligophenyleneethynylene‐derived π‐surface appended with six long (dodecyloxy ( 2 )) or short (methoxy ( 3 )) side groups. Complex 2 , containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt???Pt≈14 Å) in both nonpolar solvents and the solid state. Dispersion‐corrected PM6 calculations suggest that this organization is driven by cooperative π–π, C?H???Cl and π–Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π‐stacks (dPt???Pt≈4.4 Å) stabilized by multiple π–π and C?H???Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X‐ray analysis and PM6 calculations. Our results reveal not only the key role of alkyl chain length in controlling self‐assembly modes but also show the relevance of Pt‐bound chlorine ligands as new supramolecular synthons.  相似文献   

5.
Insertion of the 1,3-bis(ethynylene)benzene unit as a rigid spacer into a linear alkyl chain, thus separating the two resulting stems by 9 A. induces chain folding at the air-water interface. These folded molecules self-assemble into crystalline monolayers at this interface, with the plane of the folding unit almost perpendicular to the water surface, as determined by synchrotron grazing-incidence X-ray diffraction. Three distinct molecular shapes, of the types U, inverted U, and M, were obtained in the two-dimensional crystalline state, depending upon the number of spacer units, and the number and position of the hydrophilic groups in the molecule. The molecules form ribbons with a higher crystal coherence in the direction of stacking between the molecular ribbons, and a lower coherence along the ribbon direction. A similar molecule, but with a spacer unit that imposes a 5 A separation between alkyl chains, yields the conventional herringbone arrangement.  相似文献   

6.
T‐shaped coil–rod–coil oligomers, consisting of a dibenzo[a,c]phenazine unit and phenyl groups linked together with acetylenyl bonds at the 2,7‐position of dibenzo[a,c]phenazine as a rigid segment have been synthesized. The coil segments of these new molecules composed of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO) incorporating lateral methyl groups between the rod and coil segment and two flexible alkyl groups connecting with the rigid segment at the 4,6‐position of dibenzo[a,c]phenazine, respectively. The experimental results reveal that the length of the flexible PEO coil chain influence construction of various supra‐nanostructures from lamellar structure to rectangular columnar structure. It is also shown that introduction of different length of alkyl side chain groups in the backbone of the T‐shaped molecules affect the self‐organization behavior to form hexagonal perforate layer or oblique columnar structures. In addition, lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self‐assembling behavior in the crystalline phase. T‐shaped molecules containing a lateral methyl group at the surface of rod and PEO coil segments, self‐assemble into 3D body‐centered tetragonal structures in the crystalline phase, while molecules without a lateral methyl group based on PEO coil chain self‐organize into 2D oblique columnar crystalline structures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5021–5028  相似文献   

7.
The synthesis of C3‐ and C2‐symmetric benzene‐1,3,5‐tricarboxamides (BTAs) containing well‐defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS‐BTAs in methylcyclohexane was studied by temperature‐dependent UV spectroscopy. The formation of hierarchically self‐assembled aggregates was observed at different BTA concentrations, the tendency of aggregation increases by shortening or removing oDMS chains. Chiral BTAs were investigated with circular dichroism (CD) spectroscopy, showing a stronger tendency to aggregate than the achiral ones. Majority rules experiments show a linear behavior consistent with the existence of a high mismatch penalty energy. The most efficient oDMS‐BTAs organogelators have the ability to form stable organogels at 5 mg mL?1 (0.75 wt %) in hexane. Solid‐state characterization techniques indicate the formation of an intermolecular threefold hydrogen bonding between adjacent molecules forming thermotropic liquid crystals, exhibiting a hexagonal columnar organization from room temperature to above 150 °C. A decrease of the clearing temperatures was observed when increasing the number and length of the oligodimethylsiloxane chains. In addition to the three‐fold hydrogen bonding that leads to columnar liquid crystalline phase, segregation between the oDMS and aliphatic chains takes place in the BTA functionalized with two alkyl and one oDMS chain leading to a superlattice within the hexagonal structure with potential applications in lithography.  相似文献   

8.
By using aryl‐amination chemistry, a series of rodlike 1‐phenyl‐1H‐imidazole‐based liquid crystals (LCs) and related imidazolium‐based ionic liquid crystals (ILCs) has been prepared. The number and length of the C‐terminal chains (at the noncharged end of the rodlike core) and the length of the N‐terminal chain (on the imidazolium unit in the ILCs) were modified and the influence of these structural parameters on the mode of self‐assembly in LC phases was investigated by polarizing microscopy, differential scanning calorimetry, and X‐ray diffraction. For the single‐chain imidazole derivatives nematic phases (N) and bilayer SmA2 phases were found, but upon increasing the number of alkyl chains the LC phases were lost. For the related imidazolium salts LC phases were preserved upon increasing the number and length of the C‐terminal chains and in this series it leads to the phase sequence SmA–columnar (Col)–micellar cubic (CubI/Pm3n). Elongation of the N‐terminal chain gives the reversed sequence. Short N‐terminal chains prefer an end‐to‐end packing of the mesogens in which these chains are separated from the C‐terminal chains. Elongation of the N‐terminal chain leads to a mixing of N‐ and C‐terminal chains, which is accompanied by complete intercalation of the aromatic cores. In the smectic phases this gives rise to a transition from bilayer (SmA2) to monolayer smectic (SmA) phases. For the columnar and cubic phases the segregated end‐to‐end packing leads to core–shell aggregates. In this case, elongation of the N‐terminal chains distorts core–shell formation and removes CubI and Col phases in favor of single‐layer SmA phases. Hence, by tailoring the length of the N‐terminal chain, a crossover from taper‐shaped to polycatenar LC tectons was achieved, which provides a powerful tool for control of self‐assembly in ILCs.  相似文献   

9.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

10.
A new series of shape‐persistent imine‐bridged macrocycles were synthesized based on dynamic covalent chemistry. The macrocycles had an alternating sequence of dibenzothiophene and N,N′‐bis(salicylidene)‐ethylenediamine (salen) tethering branched alkyl chains. The macrocycles and tetranuclear metallomacrocycles bearing long and branched alkyl chains exhibited thermotropic columnar liquid‐crystalline phases over a wide temperature range and the metallomacrocycles greatly depended on the characteristics of the coordinated metal ions. The metal‐free macrocycle showed a liquid‐crystalline phase with a lamellar structure and poor birefringence. In sharp contrast, the macrocyclic Ni complex showed a columnar oblique liquid‐crystalline phase, whereas the Pd and Cu complexes showed columnar liquid‐crystalline phases with a lamellar structure. The macroscopic organization and thermal properties of the corresponding liquid‐crystalline metallomacrocycles were significantly dependent on the subtle structural differences among the planar macrocycles, which were revealed by single‐crystal X‐ray crystallographic analysis of the macrocycles with shorter alkyl chains.  相似文献   

11.
A convenient approach towards the synthesis of orthogonally protected chiral bis‐α‐amino acids (OPBAAs) is described. The key transformations include: (1) a highly stereoselective conjugation (alkylation) of the Schöllkopf bis‐lactim ethers and oxazolidinyl alkyl halides to build a backbone skeleton; and (2) our orthogonal protection strategy. A series of enantiopure OPBAAs bearing a variety of alkyl chain as a spacer; two stereogenic centers; and three protecting groups were prepared as examples. These versatile molecules were applied to the synthesis of biologically interesting di‐ or tri‐peptide analogues, including chiral iE‐meso‐DAP and A‐iE‐meso‐DAP, for the study of Nod1 activation in the innate immune response.  相似文献   

12.
《化学:亚洲杂志》2017,12(2):198-202
Triphenylamine‐functionalized boron 2‐(2′‐pyridyl)imidazole complex bearing no alkyl chains or H‐bond unit was found to be able to gelate a series of solvents, and the balanced intermolecular π–π interactions play an important role in its supramolecular self‐assembly. The gelator molecule is piezochromic, and the dried gel responded to pressure more sensitively than regular crystalline powder.  相似文献   

13.
Bis(zinc porphyrin) scaffolds bearing C8 or C18 alkyl chains and imidazole end groups self‐assembled in a head‐to‐tail fashion into multi‐porphyrin assemblies on both HOPG and mica. Due to weaker molecule surface‐interactions, longer arrays formed on mica than on HOPG. In both cases, it was essential first to generate monomers that were drop casted on the surface, then to allow time for the bis(zinc porphyrins) to assemble. Although thicker fibrous assemblies were observed with the C8 alkyl substituents than with the longer chains, noncovalent assemblies up to 1 μm long were observed for each molecule. These investigations provide a reproducible, noncovalent method to grow porphyrin arrays that may be of interest in molecular electronics for charge transport.  相似文献   

14.
Summary: Poly(4‐vinylpyridinium) bromides containing octyl and dodecyl pendant groups were synthesized. Bromide anions in these polymer salts were substituted with dodecylsulfate and bis(2‐ethylhexylsuccinate) anions using ion‐exchange reactions. Initially, P4VP and its derivatives loaded with hydrophobic groups were deposited on a mica surface from diluted solutions in chloroform for visualization. Images of single adsorbed macromolecules were obtained using scanning force microscopy. Original P4VP chains form partially compacted self‐intersecting coils. Loading the polymer chains with large hydrophobic groups and especially the increase in the number of alkyl tails (see Figure) per monomer unit of the polymer chain leads to the stretching of the coils, and the comb‐like macromolecules adopt more and more extended self‐avoiding 2D conformations when deposited on the substrate.

Polymer chains with large hydrophobic groups and increasing number of alkyl tails per monomer unit of the polymer chain.  相似文献   


15.
Two new bridged alkoxysilanes, bis(triethoxysilylalkyl)‐N,N′‐oxalylureas (alkyl = methyl or n‐propyl), bearing a highly rigid and polar oxalylurea unit in the bridges, were employed as precursors of bridged silica membranes. The gas and water separation performance of the membranes prepared from the precursors using the sol–gel process was investigated. Interestingly, the membrane properties depended on the alkyl chain length. The membrane containing methylene units (alkyl = methyl) was porous and rather hydrophilic but the other with longer propylene units (alkyl = n‐propyl) was non‐porous and more hydrophobic. High H2/SF6 gas permeance ratios of 3100 and 1700, and NaCl rejections of 89 and 85% for 2000 ppm aqueous NaCl were obtained using the membranes containing methyl and n‐propyl, respectively. The membrane with alkyl = methyl also showed a high CO2/N2 permeance ratio of 20.6 at 50°C. These results indicate the potential applications of the membranes as gas and water separation materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A series of novel malonic acid diamides (second generation) with two long hydrophobic alkyl chains and an alkaline polar head group was synthesised and characterised as a new class of amino‐functionalised lipids. These peptide‐mimic lipids are suitable for polynucleotide transfer. The lipids bear a novel backbone consisting of a lysine unit and a malonic acid unit. Six different head‐group structures, which vary in size and number of amino groups that can be protonated, were attached to the backbone structure. Furthermore, different alkyl chains were used to build the lipophilic part (namely tetradecyl, hexadecyl, and oleyl). Phase transitions of the new compounds in aqueous dispersions at pH 10 were analysed and discussed in terms of head group and alkyl chain variations. The shape and size of the formed aggregates of selected lipid dispersions were investigated by dynamic light scattering and transmission electron microscopy.  相似文献   

17.
A series of crown ether cyanine dyes including crown ether styryl cyanine dyes, crown ether merocyanine dyes and crown ether squarylium cyanine dyes (unsymmetric and symmetric) derived from key intermediate 2‐methyl‐5,6(15‐crown‐5)benzotellurazole ( 1 ) were prepared.  相似文献   

18.
Several new amphiphilic iron complexes were synthesised and characterised by single crystal X‐ray structure analysis. The Schiff‐base‐like equatorial ligands contain long alkyl chains in their outer periphery with chain lengths of 8, 12, 16 and 22 carbon atoms. As axial ligands methanol, pyridine, 4‐aminopyridine, 4‐(dimethylamino)pyridine and 1,2‐bis(4‐pyridyl)ethane were used. X‐ray structure analysis of the products reveals different coordination numbers, depending on the combination of equatorial and axial ligand. The driving force for this is the self‐assembly to lipid‐layer‐like arrangements. This can be controlled through the chain lengths and the dimension of the axial ligands in a crystal‐engineering‐like approach. For this an empirical rule is introduced concerning the crystallisation behaviour of the complexes. The efficacy of this rule is confirmed with the crystallisation of an octahedral complex with two docosyl (C22) chains in the outer periphery. The rule is also applied to other ligand systems.  相似文献   

19.
Over the past few years, two‐dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two‐component molecular networks with a 3‐fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic‐acid‐terminated alkyl chains. The hydrogen‐bonding partner‐recognition‐induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two‐component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces.  相似文献   

20.
The packing of poly(di‐n‐alkylsilylenemethylene) (PDASMs) chains was studied by using X‐ray, electron diffraction, and molecular modeling methods. X‐ray and electron diffraction measurements revealed unit cells in which the PDASMs were efficiently packed. The PDASM with the longer alkyl side chains, such as poly(di‐n‐propylsilylenemethylene) (PDPrSM), showed packing with the alkyl side chains interlocked with each other like cross‐shaped gears in the two‐dimensional monoclinic unit cell. The PDASM with the shorter ethyl substituent, poly(di‐n‐ethylsilylenemethylene) (PDESM), showed a lack of ability to interlock its side chains due to the short length of the alkyl groups. In these studies, we found that the length of the alkyl side chains could change the packing arrangement of PDASMs from monoclinic to orthorhombic to hexagonal with only short‐range order as the alkyl side chain length decreases at room temperature.

The ab projection of a 4 × 4 chain array of poly(di‐n‐propylsilylenemethylene) (PDPSM) in the monoclinic unit cell.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号