首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polymorphic DNA G‐quadruplex recognition has attracted great interest in recent years. The strong binding affinity and potential enantioselectivity of chiral [Ru(bpy)2(L)]2+ (L=dipyrido[3,2‐a:2′,3′‐c]phenazine, dppz‐10,11‐imidazolone; bpy=2,2′‐bipyridine) prompted this investigation as to whether the two enantiomers, Δ and Λ, can show different effects on diverse structures with a range of parallel, antiparallel and mixed parallel/antiparallel G‐quadruplexes. These studies provide a striking example of chiral‐selective recognition of DNA G‐quadruplexes. As for antiparallel (tel‐Na+) basket G‐quadruplex, the Λ enantiomers bind stronger than the Δ enantiomers. Moreover, the behavior reported here for both enantiomers stands in sharp contrast to B‐DNA binding. The chiral selectivity toward mixed parallel/antiparallel (tel‐K+) G‐quadruplex of both compounds is weak. Different loop arrangements can change chiral complex selectivity for both antiparallel and mixed parallel/antiparallel G‐quadruplex. Whereas both Δ and Λ isomers bind to parallel G‐quadruplexes with comparable affinity, no appreciable stereoselective G‐quadruplex binding of the isomers was observed. In addition, different binding stoichiometries and binding modes for Δ and Λ enantiomers were confirmed. The results presented here indicate that chiral selective G‐quadruplex binding is not only related to G‐quadruplex topology, but also to the sequence and the loop constitution.  相似文献   

2.
In an effort to explore the effect of ancillary ligands on the spectral properties and overall G‐quadruplex DNA binding behavior, two new ruthenium(II) complexes [Ru(phen)2(dppzi)]2+ ( 1 ) and [Ru(dmp)2(dppzi)]2+ ( 2 ) (phen=1,10‐phenanthroline, dmp=2,9‐dimethyl‐1,10‐phenanthroline, dppzi=dipyrido[3,2‐a:2′,3′‐c]phenazine‐10,11‐imidazole) were prepared. Complex 1 can emit luminescence in the absence and presence of G‐quadruplexes DNA. However, with ?CH3 substituent on the 2‐ and 9‐positions of the phen ancillary ligand, no detectable luminescence is observed for complex 2 in any organic solvent or in the absence and/or presence of G‐quadruplex DNA. Experimental and molecular docking studies indicated that both complexes interacted with the human telomeric repeat AG3(T2AG3)3 (22AG) G‐quadruplex with the stoichiometric ratio of 1:1, but the two complexes showed different G‐quadruplex DNA binding affinity. Complex 1 binds to the G‐quadruplexes DNA more tightly than complex 2 does. Our results demonstrate that methyl groups on the phen ancillary ligand significantly affect the spectral properties and the overall DNA binding behavior of the complexes. Such difference in spectral properties and DNA binding affinities of these two complexes can be reasonably explained by DFT/TD‐DFT calculations. This work provides guidance not only on exploring the G‐quadruplexes DNA binding behavior of complexes, but also understanding the unique luminescence mechanism.  相似文献   

3.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular‐like G‐quadruplex motif 1 (parallel G‐quadruplex conformation), an intramolecular G‐quadruplex 2 , and a duplex DNA 3 have been designed and developed. The method is based on the concept of template‐assembled synthetic G‐quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G‐quadruplex conformation. Various known G‐quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a π‐stacking binding mode showed a higher binding affinity for intermolecular‐like G‐quadruplexes 1 , whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2 . In addition, the present method has also provided information about the selectivity of ligands for G‐quadruplex DNA over the duplex DNA. A numerical parameter, termed the G‐quadruplex binding mode index (G4‐BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G‐quadruplex 1 against intramolecular G‐quadruplex 2 . The G‐quadruplex binding mode index (G4‐BMI) of a ligand is defined as follows: G4‐BMI=KDintra/KDinter, where KDintra is the dissociation constant for intramolecular G‐quadruplex 2 and KDinter is the dissociation constant for intermolecular G‐quadruplex 1 . In summary, the present work has demonstrated that the use of parallel‐constrained quadruplex topology provides more precise information about the binding modes of ligands.  相似文献   

4.
G‐quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G‐quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G‐quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G‐quadruplex binding. We determined two NBTE ‐G‐quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G‐quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G‐quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G‐quadruplex DNA in live cells with NBTE and found G‐quadruplex DNA content in cancer cells is 4‐fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

5.
The oligomer d(GCGTG3TCAG3TG3TG3ACGC) with short complementary flanking sequences at the 5′‐ and 3′‐ends was shown to fold into three different DNA G‐quadruplex species. In contrast, a corresponding oligomer that lacks base complementarity between the two overhang sequences folds into a single parallel G‐quadruplex. The three coexisting quadruplex structures were unambiguously identified and structurally characterized through detailed spectral comparisons with well‐defined G‐quadruplexes formed upon the deliberate incorporation of syn‐favoring 8‐bromoguanosine analogues into specific positions of the G‐core. Two (3+1) hybrid structures coexist with the parallel fold and feature a novel lateral–propeller–propeller loop architecture that has not yet been confirmed experimentally. Both hybrid quadruplexes adopt the same topology and only differ in their pattern of antisyn transitions and tetrad stackings.  相似文献   

6.
Single‐stranded telomeric DNA tends to form a four‐base‐paired planar structure termed G‐quadruplex. Although kinds of G‐quadruplex structures in vitro have been documented in the presence of potassium or sodium, recognition of these DNA motifs (both in vitro and in vivo) is still an important issue in understanding the biological function of the G‐quadruplex structures in telomeres as well as developing anticancer agents. Herein we address this important question through the distinctive properties of a supramolecular system of cyanine dye 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐methyl‐thiacarbocyanine triethylammonium salt (MTC) upon binding to different DNA motifs. Interaction of MTC with hybrid/mixed G‐quadruplex results in a set of unique spectrophotometric signatures which are completely different from those arising from binding to other DNA motifs. Furthermore, such feature could be extended to map the locations of DNAs on interface. Linear duplex and mixed G‐quadruplex in human telomeres assembled on Au film and stained by MTC were directly recognized by confocal laser scanning microscopy (CLSM). All results suggested that MTC supramolecular system may be a good probe of specific G‐quadruplex structure.  相似文献   

7.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

8.
The interaction of phenyl‐substituted indolo[3,2‐b]quinolines with DNA G‐quadruplexes of different topology were studied by using a combination of spectroscopic and calorimetric methodologies. N5‐Methylated indoloquinoline derivatives (MePIQ) with an aminoalkyl side chain exhibit high affinities for the parallel‐stranded MYC quadruplex and a (3+1)‐hybrid structure combined with an excellent discrimination against the antiparallel thrombin‐binding aptamer (TBA) and the human telomeric (HT) quadruplexes. Dissociation constants for the binding of the ligand to the MYC quadruplex are in the submicromolar range, being below the corresponding dissociation constants for the antiparallel‐stranded quadruplexes by about one order of magnitude. Competition experiments with double‐helical DNA reveal the impact of indoloquinoline structural features on the selectivity for the parallel quadruplex relative to duplex DNA. Based on a calorimetric analysis binding to MYC is shown to be equally driven by favorable enthalpic and entropic contributions with no significant impact on the type of cation present.  相似文献   

9.
G‐quadruplex DNA plays an important role in the potential therapeutic target for the design and development of anticancer drugs. As various G‐quadruplex sequences in the promoter regions or telomeres can form different secondary structural modes and display a diversity of biology functions, variant G‐quadruplex interactive agents may be necessary to cure different disease by differentiating variant types of G‐quadruplexes. We synthesize five cationic methylpyridylium corroles and compare the interactions of corroles with different types of G‐quadruplexes such as cmyc, htelo, and bcl2 by using surface plasmon resonance. Because of the importance of human telomere G‐quadruplex DNA, we focus on the biological properties of the interactions between human telomere G‐quadruplex DNA and corrole isomers using CD, Tm, PCR‐stop (PCR= polymerase chain reaction), and polymerase‐stop assay, which demonstrate the excellent ability of the corrole to induce and stabilize the G‐quadruplex. This study provides the first experimental insight into how selectivity might be achieved for different G‐quadruplexes by a single group of methylpyridylium corrole isomers that may be optimized for potential selective cancer therapy.  相似文献   

10.
The design and synthesis of a series of bis‐indole carboxamides with varying amine containing side chains as G‐quadruplex DNA stabilising small molecules are reported. Their interactions with quadruplexes have been evaluated by means of Förster resonance energy transfer (FRET) melting analysis, UV/Vis spectroscopy, circular dichroism spectroscopy and molecular modelling studies. FRET analysis indicates that these ligands exhibit significant selectivity for quadruplex over duplex DNA, and the position of the carboxamide side chains is of paramount importance in G‐quadruplex stabilisation. UV/Vis titration studies reveal that bis‐indole ligands bind tightly to quadruplexes and show a three‐ to fivefold preference for c‐kit2 over h‐telo quadruplex DNA. CD studies revealed that bis‐indole carboxamide with a central pyridine ring induces the formation of a single, antiparallel, conformation of the h‐telo quadruplex in the presence and absence of added salt. The chirality of h‐telo quadruplex was transferred to the achiral ligand (induced CD) and the formation of a preferred atropisomer was observed.  相似文献   

11.
We report herein a solvent‐free and microwaved‐assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4‐oxadiazole moieties ( 1 – 7 ). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4‐FID) and CD spectroscopy. Among the G‐quadruplexes considered, attention was focused on telomeric repeats together with the proto‐oncogenic c‐kit sequences and the c‐myc oncogene promoter. Compound 1 , and to a lesser extent 2 and 5 , preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole ( TOxaPy ), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties.  相似文献   

12.
Telomeric G‐quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G‐quadruplex that adopts the biologically relevant hybrid‐2 conformation in a ligand‐bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G‐quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G‐quadruplex. The ligand is sandwiched between one terminal G‐tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G‐quadruplex structure as observed for other G‐quadruplexes in different conformations, invalidating simple docking approaches to ligand–G‐quadruplex structure determination.  相似文献   

13.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

14.
While is it well known that human telomeric DNA sequences can adopt G‐quadruplex structures, some promoters sequences have also been found to form G‐quadruplexes, and over 40% of promoters contain putative G‐quadruplex‐forming sequences. Because UV light has been shown to crosslink human telomeric G‐quadruplexes by cyclobutane pyrimidine dimer (CPD) formation between T's on adjacent loops, UV light might also be able to photocrosslink G‐quadruplexes in promoters. To investigate this possibility, 15 potentially UV‐crosslinkable G‐quadruplex‐forming sequences found in a search of human DNA promoters were UVB irradiated in vitro, and three were confirmed to have formed nonadjacent CPDs by mass spectrometry. In addition to nonadjacent T=T CPDs found in human telomeric DNA, a nonadjacent T=U CPD was discovered that presumably arose from deamination of a nonadjacent T=C CPD. Analysis of the three sequences by circular dichroism, melting temperature analysis and chemical footprinting confirmed the presence of G‐quadruplexes that could explain the formation of the nonadjacent CPDs. The formation of nonadjacent CPDs from the sequences in vitro suggests that they might be useful probes for the presence of non‐B DNA structures, such as G‐quadruplexes, in vivo, and if they were to form in vivo, might also have significant biological consequences.  相似文献   

15.
The interactions of three cationic distyryl dyes, namely 2,4‐bis(4‐dimethylaminostyryl)‐1‐methylpyridinium ( 1 a ), its derivative with a quaternary aminoalkyl chain ( 1 b ), and the symmetric 2,6‐bis(4‐dimethylaminostyryl)‐1‐methylpyridinium ( 2 a ), with several quadruplex and duplex nucleic acids were studied with the aim to establish the influence of the geometry of the dyes on their DNA‐binding and DNA‐probing properties. The results from spectrofluorimetric titrations and thermal denaturation experiments provide evidence that asymmetric (2,4‐disubstituted) dyes 1 a and 1 b bind to quadruplex DNA structures with a near‐micromolar affinity and a fair selectivity with respect to double‐stranded (ds) DNA [Ka(G4)/Ka(ds)=2.5–8.4]. At the same time, the fluorescence of both dyes is selectively increased in the presence of quadruplex DNAs (more than 80–100‐fold in the case of human telomeric quadruplex), even in the presence of an excess of competing double‐stranded DNA. This optical selectivity allows these dyes to be used as quadruplex‐DNA‐selective probes in solution and stains in polyacrylamide gels. In contrast, the symmetric analogue 2 a displays a strong binding preference for double‐stranded DNA [Ka(ds)/Ka(G4)=40–100), presumably due to binding in the minor groove. In addition, 2 a is not able to discriminate between quadruplex and duplex DNA, as its fluorescence is increased equally well (20–50‐fold) in the presence of both structures. This study emphasizes and rationalizes the strong impact of subtle structural variations on both DNA‐recognition properties and fluorimetric response of organic dyes.  相似文献   

16.
By using X‐ray crystallography, we show that the complexes Λ/Δ‐[Ru(TAP)2(11‐CN‐dppz)]2+ (TAP=1,4,5,8‐tetraazaphenanthrene, dppz=dipyridophenazine) bind DNA G‐quadruplex in an enantiospecific manner that parallels the specificity of these complexes with duplex DNA. The Λ complex crystallises with the normally parallel stranded d(TAGGGTTA) tetraplex to give the first such antiparallel strand assembly in which syn‐guanosine is adjacent to the complex at the 5′ end of the quadruplex core. SRCD measurements confirm that the same conformational switch occurs in solution. The Δ enantiomer, by contrast, is present in the structure but stacked at the ends of the assembly. In addition, we report the structure of Λ‐[Ru(phen)2(11‐CN‐dppz)]2+ bound to d(TCGGCGCCGA), a duplex‐forming sequence, and use both structural models to provide insight into the motif‐specific luminescence response of the isostructural phen analogue enantiomers.  相似文献   

17.
FRET spectroscopy is a promising approach for investigating the dynamics of G‐quadruplex DNA folds and improving the targeting of G‐quadruplexes by potential anticancer compounds. To better interpret such experiments, classical and replica‐exchange molecular dynamics simulations and fluorescence‐lifetime measurements are used to understand the behavior of a range of Cy3‐based dyes attached to the 3′ end of G‐quadruplex DNA. The simulations revealed that the dyes interact extensively with the G‐quadruplex. Identification of preferred dye positions relative to the G‐quadruplex in the simulations allows the impact of dye–DNA interactions on FRET results to be determined. All the dyes show significant deviations from the common approximation of being freely rotating and not interacting with the host, but one of the Cy3 dye analogues is slightly closer to this case.  相似文献   

18.
G‐quadruplexes (G4s) are peculiar DNA or RNA tertiary structures that are involved in the regulation of many biological events within mammalian cells, bacteria, and viruses. Although their role as versatile therapeutic targets has been emphasized for 35 years, G4 selectivity over ubiquitous double‐stranded DNA/RNA, as well as G4 differentiation by small molecules, still remains challenging. Here, a new amphiphilic dicyanovinyl‐substituted squaraine, SQgl , is reported to act as an NIR fluorescent light‐up probe discriminating an extensive panel of parallel G4s while it is non‐fluorescent in the aggregated state. The squaraine can form an unconventional sandwich π‐complex binding two quadruplexes, which leads to a strongly fluorescent (Φ F=0.61) supramolecular architecture. SQgl is highly selective against non‐quadruplex and non‐parallel G4 sequences without altering their topology, as desired for applications in selective in vivo high‐resolution imaging and theranostics.  相似文献   

19.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

20.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号