首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The catalytic, deactivation, and regeneration characteristics of large coffin‐shaped H‐ZSM‐5 crystals were investigated during the methanol‐to‐hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas‐phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin‐shaped zeolite H‐ZSM‐5 crystals in a fixed‐bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization‐dependent UV‐visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time‐of‐flight secondary‐ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed‐bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2/inert gas mixtures at 550 °C. UV‐visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H‐ZSM‐5 deactivated more rapidly at higher reaction temperature.  相似文献   

2.
A variety of phosphated zeolite H‐ZSM‐5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H‐31P cross polarization (CP), 27Al‐31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X‐ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H‐ZSM‐5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre‐steamed H‐ZSM‐5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H‐ZSM‐5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H‐ZSM‐5, containing AlPO4, retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H‐ZSM‐5.  相似文献   

3.
Formation of coke in large H‐ZSM‐5 and H‐SAPO‐34 crystals during the methanol‐to‐olefin (MTO) reaction has been studied in a space‐ and time‐resolved manner. This has been made possible by applying a high‐temperature in‐situ cell in combination with micro‐spectroscopic techniques. The buildup of optically active carbonaceous species allows detection with UV/Vis microscopy, while a confocal fluorescence microscope in an upright configuration visualises the formation of coke molecules and their precursors inside the catalyst grains. In H‐ZSM‐5, coke is initially formed at the triangular crystal edges, in which straight channel openings reach directly the external crystal surface. At reaction temperatures ranging from 530 to 745 K, two absorption bands at around 415 and 550 nm were detected due to coke or its precursors. Confocal fluorescence microscopy reveals fluorescent carbonaceous species that initially form in the near‐surface area and gradually diffuse inwards the crystal in which internal intergrowth boundaries hinder a facile penetration for the more bulky aromatic compounds. In the case of H‐SAPO‐34 crystals, an absorption band at around 400 nm arises during the reaction. This band grows in intensity with time and then decreases if the reaction is carried out between 530 and 575 K, whereas at higher temperatures its intensity remains steady with time on stream. Formation of the fluorescent species during the course of the reaction is limited to the near‐surface region of the H‐SAPO‐34 crystals, thereby creating diffusion limitations for the coke front moving towards the middle of the crystal during the MTO reaction. The two applied micro‐spectroscopic techniques introduced allow us to distinguish between graphite‐like coke deposited on the external crystal surface and aromatic species formed inside the zeolite channels. The use of the methods can be extended to a wide variety of catalytic reactions and materials in which carbonaceous deposits are formed.  相似文献   

4.
Experimental evidence for the presence of tert‐butyl cations, which are important intermediates in acid‐catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with 1H/13C magic‐angle‐spinning NMR spectroscopy, the tert‐butyl cation was successfully identified on zeolite H‐ZSM‐5 upon conversion of isobutene by capturing this intermediate with ammonia.  相似文献   

5.
Over zeolite H‐ZSM‐5, the aromatics‐based hydrocarbon‐pool mechanism of methanol‐to‐olefins (MTO) reaction was studied by GC‐MS, solid‐state NMR spectroscopy, and theoretical calculations. Isotopic‐labeling experimental results demonstrated that polymethylbenzenes (MBs) are intimately correlated with the formation of olefin products in the initial stage. More importantly, three types of cyclopentenyl cations (1,3‐dimethylcyclopentenyl, 1,2,3‐trimethylcyclopentenyl, and 1,3,4‐trimethylcyclopentenyl cations) and a pentamethylbenzenium ion were for the first time identified by solid‐state NMR spectroscopy and DFT calculations under both co‐feeding ([13C6]benzene and methanol) conditions and typical MTO working (feeding [13C]methanol alone) conditions. The comparable reactivity of the MBs (from xylene to tetramethylbenzene) and the carbocations (trimethylcyclopentenyl and pentamethylbenzium ions) in the MTO reaction was revealed by 13C‐labeling experiments, evidencing that they work together through a paring mechanism to produce propene. The paring route in a full aromatics‐based catalytic cycle was also supported by theoretical DFT calculations.  相似文献   

6.
The methanol to olefins conversion over zeolite catalysts is a commercialized process to produce light olefins like ethene and propene but its mechanism is not well understood. We herein investigated the formation of ethene in the methanol to olefins reaction over the H‐ZSM‐5 zeolite. Three types of ethylcyclopentenyl carbocations, that is, the 1‐methyl‐3‐ethylcyclopentenyl, the 1,4‐dimethyl‐3‐ethylcyclopentenyl, and the 1,5‐dimethyl‐3‐ethylcyclopentenyl cation were unambiguously identified under working conditions by both solid‐state and liquid‐state NMR spectroscopy as well as GC‐MS analysis. These carbocations were found to be well correlated to ethene and lower methylbenzenes (xylene and trimethylbenzene). An aromatics‐based paring route provides rationale for the transformation of lower methylbenzenes to ethene through ethylcyclopentenyl cations as the key hydrocarbon‐pool intermediates.  相似文献   

7.
8.
9.
10.
The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date—the paring mechanism and the side‐chain mechanism—recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM‐5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side‐chain route) using both small and large zeolite cluster models of ZSM‐5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side‐chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de‐alkylation to produce ethene. These results suggest that the current formulation of the side‐chain route in ZSM‐5 may actually be a deactivating route to coke precursors rather than an active ethene‐producing hydrocarbon‐pool route. Other routes may be operating in alternative zeotype materials like the silico‐aluminophosphate SAPO‐34.  相似文献   

11.
Combined high‐resolution fluorescence detection X‐ray absorption near‐edge spectroscopy, X‐ray diffraction, and X‐ray emission spectroscopy have been employed under operando conditions to obtain detailed new insight into the nature of the Mo species on zeolite ZSM‐5 during methane dehydroaromatization. The results show that isolated Mo–oxo species present after calcination are converted by CH4 into metastable MoCxOy species, which are primarily responsible for C2Hx/C3Hx formation. Further carburization leads to MoC3 clusters, whose presence coincides with benzene formation. Both sintering of MoC3 and accumulation of large hydrocarbons on the external surface, evidenced by fluorescence‐lifetime imaging microscopy, are principally responsible for the decrease in catalytic performance. These results show the importance of controlling Mo speciation to achieve the desired product formation, which has important implications for realizing the impact of CH4 as a source for platform chemicals.  相似文献   

12.
Hydrocarbon‐pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon‐pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H‐ZSM‐5 zeolite by advanced 13C–27Al double‐resonance solid‐state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the 13C nuclei (associated with HP species) and the 27Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction.  相似文献   

13.
The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol‐to‐olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H‐SAPO‐34 and H‐SSZ‐13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol‐treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time‐dependent density functional theory (TDDFT) calculations. Static gas‐phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.  相似文献   

14.
15.
16.
Dual‐mesoporous ZSM‐5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co‐templates. The product contains two types of mesopores—smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30–50 nm in diameter along the b axis—and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual‐mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry.  相似文献   

17.
Integrated differential phase‐contrast scanning transmission electron microscopy (iDPC‐STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low‐dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite‐1; iDPC‐STEM was then used to investigate molybdenum supported on various zeolites including Silicalite‐1, ZSM‐5, and mordenite. Isolated single‐Mo clusters were observed in the micropores of ZSM‐5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one‐to‐one Mo‐Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM‐5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号